首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flowering response and plant form of photomorphogenic mutants (hy1, hy2, hy3, hy4 and hy5) of Arabidopsis thaliana (L.), a long-day plant, were examined in long and short days. There were only slight differences among genotypes including Landsberg wild type with respect to the flowering time under long days. The effect of 1 h light-(night)-breaks of far-red, red, blue and white light given in the middle of the dark period of plants grown under short days, was studied. Effects of far-red light applied at the end or the beginning of the main photoperiod on flowering and plant form were also examined. The light-breaks with all the above mentioned light qualities promoted floral initiation of all the genotypes including the wild type in terms of both the flowering time and the number of rosette leaves. In general, far-red light was most effective. It is possible to classify the hy-mutants into 3 groups by their responses to light-breaks under short day conditions: (a) Mutants hy2 and hy3, which have a reduced number of rosette leaves, and flower early. Red light is as effective as far-red light. The wavelength of light-breaks is relatively unimportant for flowering response. (b) Mutants hy4, hy5 and Landsberg wild type, which have a greater number of rosette leaves, and flower relatively late. The effectiveness of light-breaks is in the following order, far-red, blue, and red light, which is in reverse order to the transformation of phytochrome to the Pfr form. (c) Mutant hy1, which behaves anomalously with respect to relations between flowering time and number of rosette leaves; late flowering with reduced number of rosette leaves. Red, blue and far-red light are effective, but white light is ineffective for reducing the number of rosette leaves. When far-red light was given in the middle of the night or at the end of the main photoperiod, it markedly reduced the number of rosette leaves compared to those grown under short days for all the genotypes, while when applied at the beginning of the main photoperiod far-red light did not affect the number of rosette leaves. Different effects on the plant form dependent on the time of treatment with far-red light-breaks are also discussed.  相似文献   

2.
Carbohydrate accumulation was induced in Allium cepa L. cv. Dorata di Parma by the addition of far-red light throughout the 18 h day. Neither an 18 h-day without far-red nor the addition of far-red light to a 10 h photoperiod could induce the carbohydrate accumulation. The accumulation of reducing sugar takes place both in the leaf-blades and in the bulb; while there is accumulation of oligosaccharides only in the bulb. The results implicate phytochrome in the promotion of carbohydrate accumulation by far-red light.  相似文献   

3.
The action of light in the initiation of floral buds in vitro has been studied using monochromatic light qualities on root explants of a long day plant, Cichorium intybus L. cv. Witloof. Red light (660 nm, 0.30 W m-2) promotes flowering, while far-red (730 nm, 0.31 W m-2) and irradiation with combined red + far-red (0.20 + 0.41 W m-2) have no effect. In short day conditions floral response can be obtained in two ways: 1) by interrupting the dark period with 5 brief irradiations of red light (0.45 W m-2, 12 min) at regular intervals, although these are counteracted by far-red irradiations of equal intensity and duration; 2) by interrupting the long night with 5 h red light applied during the second third of the night, while at the beginning or at the end it is ineffective. Red light efficiency appears to depend on the photosynthetic activity of the tissues, so that flowering increases with increasing intensity of white light and is suppressed if no white light is supplied. The reproductive development is determined by the coordination of proper irradiation conditions with sufficient sensitivity of the perceiving meristematic cells. The period of highest sensitivity to environmental light conditions in the life cycle of a Cichorium root explant occurs between the 8th and the 16th day after the start of the culture. The data strongly suggest that phytochrome is involved in flower induction of Cichorium in vitro.  相似文献   

4.
The effect of light quality on the extension growth of vegetativeshoots and on the final size of their leaves was investigatedin plants of Lolium multiflorum, Sporobolus indicus and Paspalumdilatatum. Three experimental approaches were used, (a) redor far-red end-of-day irradiations of sunlight-grown plants,(b) different red/far-red ratios of white light in a growthroom and (c) sunlight enrichment with radiation of differentred/far-red ratios or with different amounts of far-red lightduring the photoperiod. Plants treated with end-of-day far-redor low red/far-red ratios throughout the photoperiod developedlonger leaves and, as a result, longer shoots. This effect wasmore marked in leaf sheaths than in blades. Tiller extensionand leaf sheath length increased with the amount of far-redadded to sunlight in a simple hyperbolic relationship. Theseresults show that vegetative grass shoots respond to light qualityin a way similar to internodes of dicotyledonous plants. Lolium multiflorum Lam., Sporobolus indicus (L.), Paspalum dilatatum (Poir.), leaf growth, tiller growth, photomorphogenesis  相似文献   

5.
Bulbing was studied in shallot plants cultured in vitro. Bulbing occurred under a 16 h photoperiod with fluorescent + incandescent light and 30-50 g 1(-1) sucrose in the culture medium. Exogenous gibberellin (10 microM GA3) inhibited leaf and root growth and bulbing. When added to the medium at a concentration of 10 microM, three inhibitors of gibberellin biosynthesis (ancymidol, flurprimidol and paclobutrazol) promoted bulb formation and the percentage of bulbing. When ancymidol was used in combination with GA3, it did not reverse the effect of GA3 applied alone. Under treatments with 30-70 g l(-1) sucrose, bulbing ratios greater than those found in control plants were achieved by addition of ancymidol, and bulb fresh weight was increased in the same way. Ancymidol caused a 66% decrease in sucrose content in leaf bases but greatly increased the glucose, fructose and fructan contents. The increase in fructan content by ancymidol could result from the three-fold rise in total [14C]sucrose uptake per plant from the culture medium associated with a marked increase in leaf base labelling at the expense of root labelling. The possible role of ancymidol is discussed and evidence supports a major regulatory role for gibberellins in bulbing.  相似文献   

6.
The light requirement for germination in spores of the fern Thelypteris kunthii (Desv.) Morton was fully satisfied by a long period of continuous red light or partially by intermittent, short periods of red light. Red light-potentiated spore germination was inhibited by brief far-red light irradiation, indicating phytochrome involvement. Repeated exposure of spores to prolonged red and short far-red irradiations, or exposure of red-potentiated spores to far-red light after an extended period in darkness, led to their escape from inhibition of germination by far-red light. Prolonged irradiation of spores with blue light before or after red light treatment partially antagonized the effect of red light.  相似文献   

7.
Are two photoreceptors involved in the flowering of a long-day plant?   总被引:1,自引:0,他引:1  
The effect of daylength extension with narrow spectral bands on the flowering of a long-day plant, Brassica campestris L. cv. Ceres, was investigated to obtain clues to the identity of the photoreceptor involved. Extension of a 9 h photoperiod with 5 h of light pulses at various wavelengths resulted in maximal flowering occurring after irradiation at 710 nm, less at 730 nm, and none at 550, 660 and 750 nm. Flowering at 710 and 730 nm was negated by simultaneous exposures at 550 nm, but not at 660 nm. A short preirradiation at 660 nm enabled a following irradiation at 750 nm to induce flowering. This latter induction was prevented by 550 nm irradiation.
Short flashes of light at 710 nm induced flowering that was negated by a following flash at 550 nm but not at 660 nm. The negation by 550 nm radiation was prevented by subsequent flashes at 710 nm, indicating photoreversibility. A flash at 660 nm enabled subsequent light flashes at 750 nm to initiate flowering that was reversed by a following 550 nm flash.
From the results showing the necessity of red and far-red lights, it is proposed that flowering in this long-day plant is due to two photoreceptors - one is phytochrome and the other an unknown pigment with far-red, green photoreversible properties. By using fluence response data, it is deduced that the unidentified photoreceptor has weak absorption bands in the far-red, but has a strong absorption band in the green. Flowering is induced when effects of red light absorbed by phytochrome interact with effects of far-red light absorbed by the unidentified photoreceptor.  相似文献   

8.
Reversible floral responses of Lemna perpusilla to red and far-redlights appeared only at the beginning of the inductive darkperiod when the 8 hr photoperiod consisted of white or red light.When blue or far-red light was given during the 8 hr photoperiod,the far-red given at the beginning of the dark period scarcelyinhibited flowering; red/far-red reversibility newly appearedat the middle of the dark period. This indicates that the photoregulationsystem in the flowering of L. perpusilla can be converted fromthe Pharbitis type to the Xanthium type by changing the lightquality of the main photoperiod from white or red to blue orto far-red, which is known to be effective for the so-calledhigh-energy photoreaction of photomorphogenesis. (Received July 2, 1975; )  相似文献   

9.
The effects of irradiations with different proportions of red/farred light and of gibberellic acid on the phytochrome-mediated seed germination of Kalanchoë blossfeldiana cv. Feuerblüte, were studied. The seed coat transmits much more red than far-red light, and therefore the energy ratio between 660 nm and 730 nm is given only for the transmitted light. Decreasing this ratio from 65 to 1.0 caused only a very slight inhibition. If this ratio is further lowered to 0.64, a 10 min terminal irradiation after a 3-h white light photoperiod is inhibitory, but a 12-h photoperiod or continuous irradiation is not. If the ratio is decreased to 0.44 or 0.31, a 12-h photoperiod is now also inhibitory, although continuous irradiation and 10 min terminal irradiation are still more inhibitory. These results are discussed in terms of phytochrome phototransformations. Although gibberellic acid is unable to cause any germination in complete darkness, it can result in a very high germination percentage, if combined with treatments which by themselves do not induce any germination such as continuous far-red, terminal far-red after short photoperiods, or very short photoperiods at 25°C. These results point to a strong synergism between gibberellic acid and the so-called stabilized form of phytochrome, P*FR.  相似文献   

10.
Sown on water, seeds of Kalanchoëbiossfetdiana Poelln. cv. Feuerblute are absolutely light-requiring and show full red/far-red reversibility. In seeds, sown on 2 ×10-3 M gibberellic acid, red/far-red reversibility disappears and both short red and far-red irradiations induce germination. Gibberellic acid alone does not induce germination, but it increases the physiological activity of Pfr to the extent, that the low Pfr level obtained by far-red irradiation becomes very effective. The synergism between gibberellic acid and far-red light appears after a two-day incubation; period. The nature of this lag phase was examined by measuring both germination and uptake of labelled gibberellic acid in intact seeds and seeds with a punctured seed coat. The lag phase was shown to be independent of the uptake kinetics of gibberellic acid and allows development to a specific stage, necessary for germination after phytochrome-phototransformation. The kinetics of the uptake of gibberellic acid by intact seeds and embryos of intact seeds are different. In intact seeds most of the gibberellic acid is retained in the seed coat; only a small fraction actually penetrates to the embryo where it can exert its physiological activity.  相似文献   

11.
Bulb size and maturity are key characteristics of an onion cropand the onset of bulbing is an important determinant of these.In this paper we describe an experiment in which bulb and neckdiameter and leaf number were measured in onion crops (cultivarsPukekohe Longkeeper and Early Longkeeper) with different sowingdates planted at two different locations in New Zealand. A sensitiveindicator of earliest time of bulbing was developed using theratio of bulb and neck diameters and the statistical techniqueof cusums. Bulb diameter at bulbing was related to thermal timeaccumulated prior to bulbing. Bulbing only occurred when dualthresholds of a minimum thermal time of 600 degree days anda photoperiod of 13.75 h were reached. Mathematical relationshipswere developed between leaf number, sowing date, bulbing dateand bulb growth and maturity. Final bulb size could be predictedfrom bulb size at bulbing and number of leaves produced afterbulbing. Bulb maturity date could be predicted by number ofleaves after bulbing. Allium cepa L.; onion; temperature; photoperiod; bulb-neck ratio; leaf number; bulbing  相似文献   

12.
In photoresponses regulated by phytochrome the effect of a red irradiation is not always reversed by far-red. This applies for instance to the influence of red light on the geotropic reactions of Avena coleoptiles. We could induce red/far-red reversibility by a short de-etiolating exposure to red light about 20 h prior to the experimental irradiations. This, was due to a decrease of the sensitivity to the low level of the far-red absorbing form of phytochrome that is established by far-red. Since etiolated plants react also to a wavelength of 520 nm (green light), it is advisable to expose the coleoptiles to a de-etiolating irradiation prior to manipulations in green safelight in order to prevent the plants from reacting to the green light.  相似文献   

13.
J. E. Hughes  E. Wagner 《Planta》1987,172(1):131-138
The effects of far-red light given against a background of white light on the stem-extension kinetics of three-week-old, light-grown Chenopodium album seedlings were investigated. Under white light alone, the stems (cotyledon-to-apex) extended almost exactly logarithmically with time. Under these conditions the increase in log [stem length in mm] per hour was approx. 3.7·10-3, equivalent to about 1% per h during both skoto-and photoperiods. Supplementary far-red given throughout each photoperiod massively stimulated extension. The calculated logarithmic extension rate, however, slowly returned to that of the controls, following an initial large increase. This is predicted by a model in which far-red light linearly increases the extension rate of individual internodes which arise at an exponentially increasing rate. The behaviour of the model is also consistent with critical experiments in which far-red was given as a pre-treatment or transiently, as well as with other published data. Far-red stimulation of logarithmic extension rate in successive photoperiods was closely and linearly correlated with calculated phytochrome photoequilibrium. Daily short periods of supplementary far-red were especially potent in accelerating extension; the plants seemed least responsive at the end of the photoperiod.Abbreviations FR supplementary far-red light - I stem length (mm) - LSER logarithmic stem extension rate - Pfr far-red absorbing form of phytochrome - R:FR red:far-red fluence rate ratio - WL white light - c calculated phytochrome photoequilibrium  相似文献   

14.
Seeds of Ocimum americanum L. display an absolute light requirement for germination. The minimal length of the daily photoperiod required to induce a high germination decreased with increasing seed age, but the length of the photoperiod under potential control of terminal far-red light inhibition remained unchanged. There was a gradual escape from the far-red inhibition with increase in the length of the photoperiod. Seeds developed flash photosensitivity after the first 13 h photoperiod. Scarification treatment did not allow the seeds to bypass the light requirement, but it enhanced the germination considerably. Under conditions of natural day length in the field, weakening of the testa by sand may abolish the need for a second exposure to light for most of the seed population, thus rendering them non-photoperiodic.  相似文献   

15.
TUCKER  D. J. 《Annals of botany》1976,40(5):1033-1042
Side shoot growth in young tomato plants was almost completelysuppressed by a 5 min period of far-red light immediately followinga 16 h photoperiod from fluorescent tubes, whereas plants givenan identical photoperiod but lacking the far-red treatment branchedprofusely. The influence of far-red light on the degree of sideshoot suppression and the correlated changes in the levels ofauxins, gibberellins, cytokinins and abscisic acid is presentedand discussed in relation to current hypotheses of correlativeinhibition. It is suggested that far-red light causes increasedauxin synthesis in the apex and young leaves, which in turninduces the formation of abscisic acid in or near the axillarybuds, and it is this hormone which inhibits bud outgrowth. Therole of cytokinins and gibberellins remains uncertain but theyprobably act in a sequential manner, the gibberellins promotingbud growth following cytokinin-mediated release from apicaldominance.  相似文献   

16.
Photoblastic seeds (achenes) of Taraxacum vulgare coll. were treated with a water solution of SAN 9789, 4-chloro-5 (methylamino) -2- (α,α,α-trifluoro- m -tolyl) -3(2H) pyridazinone. SAN-treatment increased the germination in darkness from 0 to 12%. An irradiation for 5 min with red light, giving a germination of 12% for seeds in water only, gave together with SAN treatment a germination of 60%. In both water and SAN, the effect of red irradiation could be reversed by a short irradiation (15 min) of far-red light. If far-red light was repeatedly given (5 min per h) it had hardly any effect on germination in water (4% germination), but for seeds in SAN solution, intermittent far-red light had a stimulating effect (63% germination). If far-red light was given continuously for 96 h, the germination in water was 1% and in SAN solution 17%. The results in the present paper indicate that SAN may broaden the concentration interval of Pfr for which germination is high.  相似文献   

17.
Photocontrol of stem elongation in light-grown plants of Fuchsia hybrida   总被引:1,自引:1,他引:0  
D. Vince-Prue 《Planta》1977,133(2):149-156
Stems of the caulescent long-day plant, Fuchsia hybrida cv Lord Byron, showed 2 types of response to light. In one, internode length was increased by far-red irradiation given at the end of an 8 h photoperiod: the response was no greater with prolonged exposure and was less when the start of far-red was delayed. The effect of far-red was reversible by a subsequent exposure to red light. Internode length was inversely proportional to the Pfr/P ratio established before entry to darkness and there was no evidence for loss of Pfr during a 16 h dark period. The inhibitory effect of Pfr acted at a relatively late stage of internode growth. With the development of successive internodes a second response appeared in which stems lengthened following prolonged daily exposures to red or far-red light, or mixtures of the two, or to brief breaks with red or white light. In these later internodes, a short exposure to far-red near the middle of the night was not reversible by red because red alone promoted elongation at this time. Internode length increased with increase in the daily duration of light and, when light was given throughout an otherwise dark period of 16 h, with increase in illuminance to a saturation value of 200 lx from tungsten lamps. Elongation increased as a linear function of decrease in photostationary state of phytochrome down to Pfr/P0.3; however, internodes were shorter in far-red light than in 25% red/red+far-red. It was concluded that stem length is a net response to two modes of phytochrome action. An inductive effect of Pfr inhibits a late stage in internode expansion, and a phytochrome reaction which operates only in light (and may involve pigment cycling) promotes an early stage of internode development. Stem elongation is thus a function both of the daily duration of light and its red/red+far-red content. The outgrowth of axillary buds was controlled by the first type of phytochrome action only.Abbreviations and symbols FR far red light - R red light - P phytochrome - Pfr phytochrome in the far-red light absorbing form - SD 8 h short days - LDP long-day plant - SDP short-day plant  相似文献   

18.
In Trifolium subterraneum, oxidative stress caused by ozone has been shown to result in more severe visible foliar injuries when plants were kept in dim broadband white light during the night (i.e. a long photoperiod) compared to darkness during the night (a short photoperiod). As phytochrome signalling is involved in photoperiod sensing, the effect of night-time red and far-red illumination on the ozone-induced response was studied. T. subterraneum plants were treated with ozone enriched air (70?ppb) for either 1?h for a single day or 6?h for three consecutive days. After the first ozone exposure, plants were separated into six night-time light regimes during the two subsequent nights (10?h?day, 14?h night): (1) darkness, (2) far-red light (FR), (3) a short night-break of red followed by far-red light during an otherwise dark night (R FR), (4) a short night-break of red, far-red and finally red light during an otherwise dark night (R FR R), (5) dim white light (L) and (6) red light (R). The treatments L and R resulted in significantly more severe ozone-induced visible foliar injuries relative to D and FR treatments, indicating a phytochrome-mediated response. The night-breaks resulted in a photoreversible and significantly different ozone response depending on the light quality of the last light interval (R FR or R FR R), supporting a photoreversible (between Pr and Pfr) phytochrome signalling response. Thus, in T. subterraneum, the outcome of oxidative stress due to ozone appears to depend on the photoperiod mediated by the night-time conformation of phytochrome.  相似文献   

19.
Eckard Wellmann 《Planta》1971,101(3):283-286
Summary Ultraviolet light was demonstrated to stimulate flavone glycoside synthesis in Petroselinum cell suspension cultures. The data presented suggest the involvement of phytochrome in this response: Flavone glycoside formation resulting from 1 h of ultraviolet irradiation was increased by subsequent continuous far-red light irradiation. However, the ultraviolet effect was reduced by a subsequent irradiation with 10 min of far-red. This far-red effect was fully reversed by a sub-sequent irradiation with 10 min of red. Red and far-red irradiations were ineffective without ultraviolet preirradiation. It is concluded that in this system ultraviolet irradiation is required in order to change the cells in such a way as to allow a physiological effectiveness of the phytochrome system.  相似文献   

20.
Abstract. Peas were grown in controlled environments (12h white fluorescent light. ∼47 μmol photons m-2 s 1/12 dark, 25 °C), using (1) 15-min far-red illumination at the end of each photoperiod (brief FR) to simulate the increase in the far-red/red ratio near the end of the day, and (2) high levels of supplementary far-red light (red:far-red ratio=0.04) during the entire photoperiod (long-term FR) to simulate extreme shade conditions under a plant canopy. Brief FR illumination led to marked morphological effects attributable to phytochrome regulation, namely, an increase in internodal length, but a decrease in leaflet area, chloroplast size and chlorophyll content per chloroplast compared with the control. Significantly, brief FR illumination had little or no effect on the amounts of the major chloroplast components (ribulose 1.5-biphosphate carboxylase, adenosine triphosphate synthase, cytochrome b/f complex and Photosystem II) relative to chlorophyll or Photosystem I, and the leaf photosynthetic capacities per unit chlorophyll were similar. In contrast, supplementing high levels of far-red light during the entire photoperiod not only led to the phytochrome effects above, but there was also a marked increase in leaf photosynthetic capacity per unit chlorophyll. due to increased amounts of the major chloroplast components relative to chlorophyll or Photosystem I. We hypothesize that supplementary far-red light, absorbed by Photosystem I, induced an increase in the major chloroplast components by a photosynthetic feedback mechanism. In fully greened leaves, we propose that the two photosystems themselves, rather than phytochrome, may be the predominent sensors of light quantity in triggering modulations of the stoichiometries of chloroplast components, which in turn lead to varying photosynthetic capacities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号