首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Although forested habitats in eastern Australia have attracted significant conservation‐related research, this work has focused strongly on endothermic vertebrates. Threatened reptile taxa have received less attention, but information on their habitat requirements should be central to management planning. The arboreal elapid snake Hoplocephalus stephensii is largely restricted to remnant forests in eastern Australia, and is listed as a threatened species under wildlife legislation. We collated 84 records of the current New South Wales geographical distribution of H. stephensii, and compared attributes of these locations to those of randomly chosen points within the same forests, in adjacent forests, in timber plantations and on freehold land across the geographical range of the taxon. Data on climatic and topographic characteristics of these sites were obtained from Geographic Information Systems databases and entered into a principal components analysis. Unsurprisingly, locations where snakes were recorded differed from the random sites in several respects (e.g. rainfall, elevation, seasonality of precipitation). Within a given forest, H. stephensii was generally found in areas similar to randomly chosen points. Comparison of vegetation communities used with those available within forests provided no evidence for active habitat selection. Comparisons of Geographic Information Systems‐derived data for snake‐collection localities along roads versus those within the forest revealed significant biases, and we warn that such methodological errors could generate spurious conclusions about non‐random habitat use by threatened species. In combination with previous data from radio‐tracking, we conclude that although H. stephensii is highly specialized in its arboreality and dependence upon hollow trees, its broad tolerance with respect to other factors (climatic conditions, vegetation communities, food types, etc.) allows populations to persist so long as large areas of forest with high numbers of hollow‐bearing trees are available. These requirements are similar to those of many other components of the Australian forest fauna. Thus, the findings of this study support the idea that the same kinds of management programmes can effectively conserve a wide range of taxa, if such programmes protect critical habitat components at suitable spatial scales.  相似文献   

2.
The valley of Cuatro Ciénegas, an aquatic oasis located in the Mexican Chihuahuan Desert, exhibits the highest level of endemism in North America and is a Mexican National Protected Area. However, little is known about the evolutionary distinctiveness of several vertebrate species present in the Cuatro Ciénegas valley. We conducted a phylogeographic study using mitochondrial haplotypes from the centrarchid fish Lepomis megalotis to determine if the populations found within the valley were evolutionarily distinct from populations outside the valley. We also examined if there was evidence of unique haplotypes of this sunfish within the valley. Genetic divergence of L. megalotis suggests populations within the valley are evolutionarily unique when compared to L. megalotis outside the valley. Significant mitochondrial sequence divergence was also discovered between L. megalotis populations on either side of the Sierra de San Marcos that bisects the valley. Our results reinforce previous studies that suggest the organisms occupying aquatic habitats not only within Cuatro Ciénegas but also in each of the two lobes of the valley generally deserve independent consideration during management decisions.  相似文献   

3.
Datisca (Datiscaceae) is a ditypic genus with an intercontinentally disjunct distribution. Chloroplast DNA restriction site data was obtained from 23 populations and four 10–20 year old herbarium specimens ofD. glomerata and three populations ofD. cannabina from throughout their geographic ranges in western North America and southwest-central Asia, respectively. InD. glomerata, plastome diversity is partitioned geographically. All populations from southern California have a common plastome, while most populations north of this region share a relatively divergent plastome (0.49% sequence divergence). Likewise, these plastomes are highly divergent (0.87% mean sequence divergence) from those found inD. cannabina. Biogeographic processes dating to the Pleistocene and Late Miocene may be responsible for these intra- and interspecific patterns of chloroplast DNA divergence.  相似文献   

4.
The Broad-headed snake Hoplocephalus bungaroides is one of Australia’s most endangered vertebrates. Extant populations of H. bungaroides are restricted to several geographically isolated reserves to the north, west, and south of Sydney. We analysed mitochondrial DNA from 184 specimens drawn from across the geographic range of the Broad-headed snake. Phylogenetic analysis demonstrated that H. bungaroides comprises two divergent mitochondrial lineages with a “northern” clade comprising populations west and north of Sydney and a “southern” clade comprising animals in Morton National Park. The two clades differ by an uncorrected genetic distance of 1.7%, which implies a divergence dating to approximately 755,000–850,000 years ago. We complemented our molecular data set with a detailed analysis of morphological variation both between and within the genetic clades. The two H. bungaroides genetic clades are morphologically indistinguishable and show little sexual dimorphism. Our results demonstrate that the populations north and south of this biogeographic split function as two distinct populations with no recent gene flow. There is no reason for separate taxonomic recognition of these two clades, but they do represent distinct evolutionarily significant units (ESUs) that require separate conservation management. In addition, within the northern ESU, populations from Royal National Park, Blue Mountains National Park, Wollemi National Park, and the Sydney Water Catchment supply areas should be considered as separate management units to conserve both evolutionary and ecological processes.  相似文献   

5.
The anterior half of the mitochondrial DNA control region (mtCR) sequence (ca. 400 base pairs) was compared between two color morphotypes (A, B) of Parapercis sexfasciata from Tosa Bay, southern Japan, using 16 and 21 specimens, respectively. Intramorphotypic mtCR divergences were only 0.0–0.5% and 1.0–2.5% for morphotypes A and B, respectively. In contrast, intermorphotypic mtCR divergence was much greater, 12.7–14.0%. Furthermore, phylogenetic analysis using a neighbor-joining algorithm, with P. multifasciata as an outgroup, showed that each morphotype was reciprocally monophyletic. These results and the distinct coloration and overlapping distribution indicate that the two color morphotypes of P. sexfasciata represent two distinct species. Mismatch distribution analysis suggested that both morphotypes had undergone population expansion; however, estimates of initial population sizes and mutational timescales suggested that morphotype B comprises historically larger and older populations than morphotype A.  相似文献   

6.
Three ecologically and morphologically distinct forms of Arctic charr (Salvelinus alpinus L.) have been identified in Loch Rannoch, Scotland, whose evolutionary status and origins are incompletely understood. A study was made of restriction fragment length polymorphism (RFLPs) detected variation in the D-loop, ND1 and cytochrome b regions of the mitochondrial genome, encompassing >3500 bp. Eight RFLP haplotypes were identified that clustered into three distinct clans based on restriction differences and into four clans based on sequence differences. Significant differences in RFLP frequencies were found among all morph groups. The pelagic morph was highly divergent from the two benthic forms, with the benthic forms having variants from only one genetic clan while the pelagic was dominated by a single variant from another clan. The relative divergence observed among benthic and pelagic forms is ~10 fold greater when nucleotide divergence among the haplotypes, as well as haplotype frequency differences, is taken into account. Sequence divergence between haplotypes in the two main clans is of a similar order to that between haplotypes in these clans and a charr from North America. In contrast, divergence among the two benthic morphs relates entirely to differences in haplotype frequencies. The study confirms the genetic distinctiveness of the pelagic and benthic forms as well as of the two benthic forms. It strongly supports previous evidence that the genetic divergence between the pelagic and benthic populations is allopatric in origin. Additionally, the results strongly suggest that the two benthic populations have undergone peripatric divergence through the sequential colonisation of the two basins by one lineage, followed by their spatial separation and reproductive isolation.  相似文献   

7.
Since mitochondrial DNA (mtDNA) are maternally inherited without recombination, geographic distribution of mtDNA in semiterrestrial cercopithecines is considered to be influenced by female philopatry. I examined the effect of sex difference in migration patterns on geographic distribution in a habitat whose environment has changed frequently. I investigated ten groups (n = 77) of grivets (Cercopithecus aethiops aethiops) along a 600-km stretch of the Awash River, Ethiopia. I examined the mtDNA distribution among natural local populations whose nuclear variation was already shown to have a widely homogeneous distribution. RFLP analysis of whole mtDNA genome using 17 enzymes identified ten haplotypes in five clusters (haplogroups). Sequence divergence within haplogroups ranged from 0.17%–0.38%, while divergence between haplogroups ranged between 1.0%–2.5%. Haplogroups were distributed in blocks which ranged from 120–250 km along the Awash River. The haplotype distribution pattern of males indicated that they migrate between the boundaries of these blocks. Moreover, a clumped distribution pattern suggests the history of matrilineal distribution by group fission and geographic expansion.  相似文献   

8.
In depth genetic comparisons of populations of Cutleria multifida (Tilopteridales, Phaeophyceae) collected from Europe, the northwestern Pacific Ocean, Australia and New Zealand using the DNA sequences of four gene regions (the mitochondrial cox2 and cox3 genes, the intergeneric spacer region adjacent to cox3, and the open reading frame) suggested that the northwestern European and Japanese populations were considerably greater in terms of their genetic divergence than Mediterranean, Australian or New Zealand populations. The haplotypes of the populations in northwestern European (distribution range including the type locality, seven haplotypes) and Japanese populations (seven haplotypes) were unique except for one shared haplotype. There were weak but positive correlations between the geographical distance and the genetic divergence among northwestern European and Japanese populations. Moreover, both female and male gametophytes occurred in eight of the nine Japanese localities, suggesting Japanese populations showed normal sexual heteromorphic life history of the species. In light of these results, it appears that Japanese populations were native to the area despite earlier hypothesis. In contrast, Australian and New Zealand populations were composed of only one haplotype that is very close to those found in northwestern Europe and Japan, suggesting a recent introduction history from Europe (or from northeastern Asia via Europe) by ship transport to Australia and New Zealand. The Mediterranean populations included two haplotypes identical to those found in northwestern Europe and Japan, and it is suggestive of transoceanic introductions of some populations between Mediterranean and Japanese coasts.  相似文献   

9.
Aims We aimed to investigate the effects of historical land–sea boundary and vegetation dynamics in the Australo‐Papuan region on the genetic structure of palm cockatoo populations. In doing so, we also sought to clarify the intraspecific taxonomic status of palm cockatoos, and to examine the potential conservation implications of our results. Location New Guinea and northern Australia. Methods We examined mtDNA (domain III, control region) genetic structure in 71 palm cockatoos from 17 locations across their Australo‐Papuan range. Results Twenty polymorphic sites over 242‐base pairs defined 12 haplotypes that were arranged in a 95% confidence parsimony network of six one‐step clades. Half of these were linked in one clade that included birds from eastern New Guinea–Australia, and the other half included birds from western New Guinea. Nested clade analyses revealed strong and significant genetic structure between these two clades. The average nucleotide divergence between eastern and western birds is c. 3.3%. Within the western clade there was a non‐random distribution of haplotypes according to sampling location alone, but the locations did not cluster significantly, probably due to low sample sizes. A non‐random distribution of haplotypes emerged within one of the one‐step clades from the east of the range (once rare haplotypes were removed), although the historic mechanism that may have created this pattern is unclear. The underlying low nucleotide divergence (0.39%) among haplotypes within the eastern clade suggests relatively recent common ancestry. Main conclusions Our results suggest genetic isolation of the eastern and western clades sometime during the Pleistocene. The continual reappearance of land bridges associated with Pleistocene glacio‐eustatic cycles within the eastern part of the range provides an explanation for our results. We suggest that the occurrence of two deep marine troughs maintained a narrow mountainous barrier between eastern and western birds throughout much of the Pleistocene at a time when extensive land bridges formed elsewhere in the species’ range, and that this has maintained their genetic distinctiveness. Our results provide little support for the current accepted subspecies; the western clade is roughly congruent with Probosciger aterrimus goliath (with caveats), but the otherwise unstructured small genetic distances cast considerable doubt on the remaining subspecies. The eastern and western lineages are endemic to each area and should therefore be considered for independent conservation status and management.  相似文献   

10.
We have amplified and sequnced the entire mitochondrial DNA cytochromeb gene from four species of Suidae: babirusa, warthog, bearded pig, and some specimens belonging to different subspecies and populations of wild and domestic pigs (Sus scrofa). These sequences were aligned with additional mammalian sequences retrieved from the literature and were used to obtain phylogenetic trees of the Suiformes (Artiodactyla). Several species of Carnivora, Perissodactyla. Cetacea, and other Artiodactyla were used as outgroups. Molecular phylogenetic relationships among the Suiformes reflect their current taxonomy: Hippopotamidae, Tayassuidae, and Suidae are separated by deep genetic gaps, and the division of the Suidae into the subfamilies Babyrousinae., Phacochoerinae, and Suinae has strong genetic correlates. Cytochromeb sequences show differences among Asian and Western populations ofSus scrofa, agreeing with other genetic information (karyotypes blood groups, and protein variability). The two Italian subspecies of wild boar have unique mtDNA cytochromeb haplotypes. The evolutionary rates of cytochromeb sequences are different at transitions versus transversions as well as at first, second, and third positions of codons. Therefore, these classes of substitutions reached different levels of mutational saturation. Only transversions and the conservative first and second position substitutions are linearly related to genetic distances among the Suiformes. Therefore, divergence times were computed using unsaturated conserved nucleotide substitutions and calibrated using paleontological divergence times between some Artiodactyla. Transversions apparently evolve at remarkably regular rates in ungulate taxa which have accumulated less than 20% estimated sequence divergence, corresponding to about 40–45 million years of independent evolution. Molecular, information suggests that Hippopotamidae and Tayassuidae are not closely related (as stated by Pickford, 1986, 1989, 1993) and that the origin of babirusa and warthog (about 10–19 and 5–15 million years ago, respectively) is more recent than supported by current evolutionary reconstructions. The inferred origin of bearded pig is about 2.1 million years old, and genetic divergence among differentSus scrofa populations is probably a Pleistocene event. The addition of new sequences of Suiformes does not help in resolving the phylogenetic position ofHippopotamus amphibius, which shows weak but recurrent linkages with the cetacean evolutionary lineage.To whom correspondence should be addressed.  相似文献   

11.
We investigated hellbender phylogeography through phylogenetic analyses of individuals sampled from 16 locations throughout their range in the eastern United States. Analyses were conducted on concatenated cytochrome-oxidase I (COI), cytochrome-b (Cytb) and NADH dehydrogenase subunit 4 (ND4) mtDNA sequence, totaling 2160 nucleotides. Hellbender haplotypes differed by 0.1 to 5.8% maximum likelihood (ML) corrected sequence divergence. Phylogenetic analyses reveal that hellbenders are separated into 8 reciprocally monophyletic populations or clades differentiated by a minimum of 0.7 to 5.4% sequence divergence, each of which constitutes a separate Management Unit (MU). High among population divergence and reciprocal monophyly suggest that female-mediated gene flow is severely restricted or non-existent among each MU. Hellbenders are currently divided into two subspecies, Cryptobranchus alleganiensis alleganiensis and C. a. bishopi based on morphological characters. The phylogenetic analyses presented here strongly indicate that these subspecies are paraphyletic. Management priorities for the hellbender should be reconsidered in light of these new molecular data. Results from Bayesian rooting indicate the root of the hellbender mtDNA tree lies on the branch leading to hellbender haplotypes from the Current, Eleven Point and New Rivers. The rooted tree suggests that a common ancestor in the southern Ozarks and/or southern Appalachians gave rise to northern hellbender populations, consistent with a Pleistocene refuge hypothesis.  相似文献   

12.
Four geographic strains of B. calyciflorus are investigated regarding their genetic similarity and ability to cross-mate. DNA sequence analysis of the mitochondrial cox1 gene (694 bp) and the nuclear ribosomal ITS region (735 bp) showed that the Florida and Georgia strains were very similar to each other (0.3% sequence divergence for the 1429 bp) and different from the Texas and Australia strains (~7% and 9% sequence divergence for the 1429 bp, respectively). Consistent with this genetic relatedness, cross-copulation occurred only between the Florida and Georgia strains. Thus, B. calyciflorus is a complex of cryptic species. While the Florida, Texas and Australia strains were reproductively isolated from one another, most combinations of cross-strain mating tests showed intense and prolonged male circling behavior following male–female encounters. This suggests that precopulatory male circling and copulation are two separate behaviors that may be controlled by different female chemicals and male coronal receptors. In some cross-strain mating tests, females regularly retracted their corona when circled by a male, indicating that they can recognize ‘foreign’ males and actively interfere with copulation.  相似文献   

13.
Abstract The Acacia acuminata complex includes three taxa, A. acuminata ssp. acuminata, A. acuminata ssp. burkittii and A. oldfieldii, along with several informal variants of A. acuminata. It is widespread throughout southern Australia with the centre of diversity in south‐west Western Australia. Phylogeographical patterns in the complex were investigated using a nested clade analysis of cpDNA RFLPs from 25 populations in Western Australia. Except for A. oldfieldii that was clearly identified as a distinct entity, haplotypes were not restricted to sub‐specific taxa or variants within A. acuminata. There was significant association between phylogenetic position of many haplotypes and their geographical distribution. The fine‐scale phylogeographical patterns were complex but at deeper levels in the phylogeny there was evidence of divergence between two lineages. The pattern of shared haplotypes between lineages suggests retention of ancestral polymorphism as a result of incomplete lineage sorting. The divergence of these lineages is consistent with fragmentation caused by climatic instability during the Pleistocene.  相似文献   

14.
The uplift of the Qinghai‐Tibetan Plateau (QTP) dramatically changed the topography and climate of Asia and affected the biodiversity of the plateau and its adjacent areas. However, the effects of the uplift on the dispersal, differentiation and adaptation of plants remain a puzzle when the date and processes of the uplift cannot be determined with certainty and the impacts of the Quaternary glaciations on plants on the QTP are unknown. To clarify the relationships among plants on the QTP with the plateau uplift and the Quaternary glaciations, the cpDNA trnT‐trnF regions of 891 individuals from 37 populations of Hippophae tibetana, endemic to the QTP, were sequenced in the present study. A total of 50 haplotypes were found and a strong phylogeographic structure was revealed (NST = 0.854, GST = 0.611, NST > GST, P < 0.01). The results show that three main lineages of the present populations of H. tibetana occupy the western, the middle, and the eastern geographical range, respectively, and their divergence time dates back to 3.15 Ma before present. Of 50 haplotypes, 33 (66%) are private haplotypes, which are restricted to single populations. These private haplotypes are scattered throughout the present geographical range of H. tibetana and originated from multiple differentiations in many lineages during more than 1.0 Ma period, strongly suggesting that multiple microrefugia of H. tibetana existed throughout the present geographical range during the last glacial maximum (LGM) and even earlier glaciations. Additionally, the average elevation of present populations is over 4500 m in the west and the equilibrium‐line of glaciers in the LGM was 500–300 m lower than present in the major interior part of the plateau suggesting that at most sites in the west, LGM microrefugia of H. tibetana may have been above 4000 m above sea level, the highest of all known refugia. Moreover, the divergence times among and within the three lineages and their distinct distributions as well as dispersal barriers support the theory of the recent and rapid uplift of the QTP. The rapid uplift of the plateau within the last 3.4 Ma and the associated environmental changes may have affected the dispersal and differentiation of H .tibetana and shaped its phylogeographic structure.  相似文献   

15.
Restriction endonuclease analyses of mitochondrial DNA (mtDNA) were used to examine genetic variability and population structure inLeptinotarsa decemlineata (Say). A group of three enzymes, EcoRI, HpaI, and PstI, was used to reveal polymorphism both within and among some of the 10 populations tested, yielding 16 haplotypes in combination. The frequencies of these 16 haplotypes differed significantly across geographic regions, indicating some partitioning of mtDNA haplotypes. Estimates of mtDNA sequence divergence (δ) between haplotypes ranged from 0.016 to 0.135%, suggesting local differentiation of mtDNA in some populations. Analysis of these data suggests that Texas was colonized by more than one mtDNA lineage, most likely originating in Mexico. We hypothesize that a larger founder size for the initial introductions or high levels of variability in the parent population at the edge of the CPB expanding range led to the initial partitioning of haplotypes observed in samples from Texas.  相似文献   

16.
The use of molecular genetic techniques can aidwildlife managers in setting priorities anddevising management strategies for scatteredpopulations of threatened taxa. In this study,six remnant populations of the criticallyendangered brush-tailed rock-wallaby (Petrogale penicillata) in Victoria, Australia,were examined using karyotypic, microsatellite(11 loci) and mitochondrial DNA (mtDNA) controlregion sequence analysis. Each remnantpopulation was found to be genetically distinct(unique microsatellite alleles and controlregion haplotypes), but had low geneticdiversity. This distribution of geneticdiversity between, rather than withinpopulations, is most likely a consequence ofrecent severe reductions in population size anddispersal that have occurred since Europeansettlement. The six mtDNA control regionhaplotypes identified in the Victorianpopulations were all closely related (average1.3% sequence divergence), and only 2%divergence separated haplotypes from EastGippsland and the Grampians (550 km to thewest). In contrast there was considerablesequence divergence (7.7%) between theVictorian haplotypes and those found in P.penicillata from elsewhere in the speciesrange. In comparison, 8.8% divergenceseparates P. penicillata from the closelyrelated P. herberti. The Victorianhaplotypes also formed a distinct and wellsupported monophyletic group that excludedhaplotypes from other P. penicillata andP. herberti. In light of these data, werecommend that the remnant Victorianpopulations of P. penicillata be managedseparately from remaining populations in NewSouth Wales and Queensland; and thatindividuals be regularly exchanged amongst theVictorian populations to increase theirdiversity and reduce the likelihood ofinbreeding depression.  相似文献   

17.
The Cotesia flavipes species complex of parasitic wasps are economically important worldwide for the biological control of lepidopteran stem borers. The complex currently comprises three species: Cotesia flavipes Cameron, C. sesamiae (Cameron) and C. chilonis (Matsumura) (Hymenoptera: Braconidae), which appear morphologically similar. Despite their economic importance, little is known about the genetic diversity and phylogeography of these parasitoids. Differences in the biology of geographic populations have generally been interpreted as genetic divergence among strains, but direct genetic evidence is lacking. In Australia, several stem borer pests in neighbouring countries have been identified as significant threats to the sugar industry. However, the status of C. flavipes in Australia is unknown. To examine the genetic variation among worldwide populations of the C. flavipes complex and investigate the status of the Australian C. flavipes-like species, partial sequence data were generated for mitochondrial gene regions, 16S rRNA and COI. Parsimony, minimum evolution and Bayesian analyses based on 21 geographic populations of the complex and four outgroups supported the monophyly of the complex and the existence of genetically divergent populations of C. flavipes and C. sesamiae. The geographically isolated Australian haplotypes formed a distinct lineage within the complex and were ~3.0% divergent from the other species. The results indicated that historical biogeographic barriers and recent biological control introductions play an important role in structuring lineages within these species. This study provides a phylogeographical context for examining adaptive evolution and host range within biologically divergent strains of the C. flavipes complex.  相似文献   

18.
Amentotaxus, a genus of the Taxaceae, represents an ancient lineage that has long existed in Eurasia. All Amentotaxus species experienced frequent population expansion and contraction over periodical glaciations in Tertiary and Quaternary. Among them, Amentotaxus argotaenia complex consists of three morphologically alike species, A. argotaenia, Amentotaxus yunnanensis, and Amentotaxus formosana. This complex is distributed in the subtropical region of mainland China and Taiwan where many Pleistocene refugia have been documented. In this study, genetic diversity and population structuring within and between species were investigated based on the inter-simple sequence repeats (ISSR) fingerprinting. Mean genetic diversity within populations was estimated in three ways: (1) the percentage of polymorphic loci out of all loci (P) (2) Neis unbiased expected heterozygosity (He), and (3) Shannons index of phenotypic diversity. For a total of 310 individuals of 15 populations sampled from the three species, low levels of ISSR genetic variation within populations were detected, with P=4.66–16.58%, He=0.0176–0.0645 and Hpop=0.0263–0.0939, agreeing with their seriously threatened status. AMOVA analyses revealed that the differences between species only accounted for 27.38% of the total variation, whereas differences among populations and within populations were 57.70 and 14.92%, respectively, indicating substantial isolation between the patch-like populations. A neighbor-joining tree identified a close affinity between A. yunnanensis and A. formosana. Genetic drift due to small population size, plus limited current gene flow, resulted in significant genetic structuring. Low levels of intrapopulational genetic variation and considerable interpopulational divergence were also attributable to demographic bottlenecks during and/or after the Pleistocene glaciations.  相似文献   

19.
The polymerase chain reaction (PCR) was used to amplify a segment of the mitochondrial DNA coding for NADH-dehydrogenase subunits ND5/ND6 in five smelt species (family Osmeridae). Amplified DNA was screened for restriction fragment length polymorphism (RFLP). Nucleotide sequence divergence of mitochondrial DNA between species ranges from 11.9 (between Hypomesus nipponensis and H. japonicus) to 24.7% (between Osmerus mordax dentex and Mallotus villosus catervarius). The genetic divergence between populations of H. nipponensis, H. japonicus, and Osmerus mordax dentex was 0.32, 0.08 to 0.15, and 0.025%, respectively. The absence of common haplotypes enables differentiation of closely related smelt species and, therefore, can be used for solving current problems in the taxonomy and biogeography of this family.  相似文献   

20.
Abstract Stephens' Banded Snakes (Hoplocephalus stephensii Krefft 1869) are large (to 1 m), highly arboreal elapid snakes, restricted to mesic forested areas along the eastern coast of Australia. Radiotelemetric monitoring of 16 individuals at Whian Whian State Forest in north‐eastern New South Wales over 25 months provided the first data on spatial ecology of this threatened taxon. Two major influences on movements by Stephens' Banded Snakes were identified: the distribution of large hollow‐bearing trees, and the avoidance of conspecifics. Radiotracked snakes were sedentary inside tree hollows for extended periods (mean = 8 days) during their active season, interrupted by occasional long (mean = 124 m) nocturnal movements to another shelter tree. Snakes travelled on the ground rather than within the canopy, and thus were potentially exposed to terrestrial predators. Although the home ranges of the radiotracked snakes overlapped substantially (mean = 27%), simultaneous occupancy of ‘shared’ shelter trees was less common than expected by chance. Hence, we conclude that adult Stephens' Banded Snakes generally avoid the presence of conspecifics. Snakes used from five to 30 shelter trees and home ranges of male snakes were larger than those of females (mean = 20.2 vs 5.4 ha). The large spatial scale of these movements, and limited overlap among individuals, means that a viable population of this taxon requires a large area of contiguous forest. This requirement may explain why the species has not persisted in small forest fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号