首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microtubules in yeast are essential components of the mitotic and meiotic spindles and are essential for nuclear movement during cell division and mating. The relative importance in these processes of the two divergent alpha-tubulin genes of the budding yeast Saccharomyces cerevisiae, TUB1 and TUB3, was examined through the construction of null mutations and by increasing their copy number on chromosomes and on plasmids. Experiments with null alleles of TUB3 showed that TUB3 was not essential for mitosis, meiosis, or mating. Null alleles of TUB3, however, did cause several phenotypes, including hypersensitivity to the antimicrotubule drug benomyl and poor spore viability. On the other hand, the TUB1 gene was essential for growth of normal haploid cells. Even in diploids heterozygous for a TUB1 null allele, several dominant phenotypes were evident, including slow growth and poor sporulation. This functional difference between the two genes is apparently due to different levels of expression, because extra copies of either gene could suppress the defects caused by a null mutation in the other. We conclude that in spite of the 10% divergence between the products of the two genes, there is no essential qualitative functional difference between them.  相似文献   

2.
P. J. Schatz  F. Solomon    D. Botstein 《Genetics》1988,120(3):681-695
Microtubules in yeast are functional components of the mitotic and meiotic spindles and are essential for nuclear movement during cell division and mating. We have isolated 70 conditional-lethal mutations in the TUB1 alpha-tubulin gene of the yeast Saccharomyces cerevisiae using a plasmid replacement technique. Of the 70 mutations isolated, 67 resulted in cold-sensitivity, one resulted in temperature-sensitivity, and two resulted in both. Fine-structure mapping revealed that the mutations were located throughout the TUB1 gene. We characterized the phenotypes caused by 38 of the mutations after shifts of mutants to the nonpermissive temperature. Populations of temperature-shifted mutant cells contained an excess of large-budded cells with undivided nuclei, consistent with the previously determined role of microtubules in yeast mitosis. Several of the mutants arrested growth with a sufficiently uniform morphology to indicate that TUB1 has at least one specific role in the progression of the yeast cell cycle. A number of the mutants had gross defects in microtubule assembly at the restrictive temperature, some with no microtubules and some with excess microtubules. Other mutants contained disorganized microtubules and nuclei. There were no obvious correlations between these phenotypes and the map positions of the mutations. Greater than 90% of the mutants examined were hypersensitive to the antimicrotubule drug benomyl. Mutations that suppressed the cold-sensitive phenotypes of two of the TUB1 alleles occurred in TUB2, the single structural gene specifying beta-tubulin.  相似文献   

3.
We generated a strain of Saccharomyces cerevisiae in which the sole source of alpha-tubulin protein has a cys-to-ser mutation at cys-377, and then we examined microtubule morphology and nuclear positioning through the cell cycle. During G1 of the cell cycle, microtubules in the C377S alpha-tubulin (C377S tub1) mutant were indistinguishable from those in the control (TUB1) strain. However, mitotic C377S tub1 cells displayed astral microtubules that often appeared excessive in number, abnormally long, and/or misoriented compared with TUB1 cells. Although mitotic spindles were always correctly aligned along the mother-bud axis, translocation of spindles through the bud neck was affected. In late anaphase, spindles were often not laterally centered but instead appeared to rest along the sides of cells. When the doubling time was increased by growing cells at a lower temperature (15 degrees C), we often found abnormally long mitotic spindles. No increase in the number of anucleate or multinucleate C377S mutant cells was found at any temperature, suggesting that, despite the microtubule abnormalities, mitosis proceeded normally. Because cys-377 is a presumptive site of palmitoylation in alpha-tubulin in S. cerevisiae, we next compared in vivo palmitoylation of wild-type and C377S mutant forms of the protein. We detected palmitoylated alpha-tubulin in TUB1 cells, but the cys-377 mutation resulted in approximately a 60% decrease in the level of palmitoylated alpha-tubulin in C377S tub1 cells. Our results suggest that cys-377 of alpha-tubulin, and possibly palmitoylation of this amino acid, plays a role in a subset of astral microtubule functions during nuclear migration in M phase of the cell cycle.  相似文献   

4.
Two alpha-tubulin genes from the budding yeast Saccharomyces cerevisiae were identified and cloned by cross-species DNA homology. Nucleotide sequencing studies revealed that the two genes, named TUB1 and TUB3, encoded gene products of 447 and 445 amino acids, respectively, that are highly homologous to alpha-tubulins from other species. Comparison of the sequences of the two genes revealed a 19% divergence between the nucleotide sequences and a 10% divergence between the amino acid sequences. Each gene had a single intervening sequence, located at an identical position in codon 9. Cell fractionation studies showed that both gene products were present in yeast microtubules. These two genes, along with the TUB2 beta-tubulin gene, probably encode the entire complement of tubulin in budding yeast cells.  相似文献   

5.
Virtually every biological process involves protein-protein contact but relatively few protein-protein complexes have been solved by X-ray crystallography. As more individual protein structures become available, computational methods are likely to play increasingly important roles in defining these interactions. Tubulin folding and dimer formation are complex processes requiring a variety of protein cofactors. One of these is cofactor A, which interacts with beta-tubulin prior to assembly of the alpha-tubulin-beta-tubulin heterodimer. In the yeast Saccharomyces cerevisiae, beta-tubulin is encoded by TUB2 and cofactor A by RBL2. We have used computational docking and site-directed mutagenesis to generate a model of the Rbl2-Tub2 complex from the solved structures of these two proteins. Residues in the N termini and the loops of the Rbl2 homodimer appear to mediate binding to beta-tubulin. These interact with beta-tubulin residues in the region that contains helices H9 and H10. Rbl2 and alpha-tubulin share overlapping binding sites on the beta-tubulin molecule providing a structural explanation for the mutually exclusive binding of Rbl2 and alpha-tubulin to beta-tubulin.  相似文献   

6.
《The Journal of cell biology》1994,127(6):1973-1984
We have isolated a cold-sensitive allele of TUB2, the sole gene encoding beta-tubulin in S. cerevisiae, that confers a specific defect in spindle microtubule function. At 14 degrees C, tub2-406 cells lack a normal bipolar spindle but do assemble functional cytoplasmic microtubules. In an attempt to identify proteins that are important for spindle assembly, we screened for suppressors of the cold-sensitivity of tub2-406 and obtained four alleles of a novel gene, STU1. Genetic interactions between stu1 alleles and alleles of TUB1 and TUB2 suggest that Stu1p specifically interacts with microtubules. STU1 is essential for growth and disruption of STU1 causes defects in spindle assembly that are similar to those produced by the tub2-406 mutation. The nucleotide sequence of the STU1 gene predicts a protein product of 174 kD with no significant similarity to known proteins. An epitope-tagged Stulp colocalizes with microtubules in the mitotic spindle of yeast. These results demonstrate that Stulp is an essential component of the yeast mitotic spindle.  相似文献   

7.
8.
9.
10.
C. Yue  M. Osier  C. P. Novotny    R. C. Ullrich 《Genetics》1997,145(2):253-260
This paper concerns the manner in which combinatorial mating proteins of the fungus, Schizophyllum commune, recognize one another to form complexes that regulate target gene expression. In Schizophyllum, tightly linked Y and Z mating-type genes do not promote development in the combinations present in haploid strains (i.e., self combinations). When the Y and Z genes from two different mating types are brought together by the fusion of two haploid cells, the Y and Z proteins from different mating types recognize one another as nonself, form a complex and activate development. Several Y and Z alleles are present in the population and all nonself combinations of Y and Z alleles are equally functional. We have made chimeric genes among Y1, Y3, Y4 and Y5 and examined their mating-type specificities by transformation and mating tests. These studies show that the specificity of Y protein recognized by Z protein is encoded within a short region of N-terminal amino acids. The critical region is not precisely the same in each Y protein and in each Y-Z protein interaction. For Y3 protein compared with Y4 protein, the critical residues are in an N-terminal region of 56 amino acids (residues 17-72), with 40% identity and 65% similarity. Two-hybrid studies show that: the first 144 amino acids of Y4 protein are sufficient to bind Z3 and Z5 proteins, but not Z4 protein, and proteins deleted of the Y4 specificity region do not bind Z3, Z4 or Z5 protein. Thus the specificity determinant of the Y protein is essential for protein-protein recognition, Y-Z protein binding and mating activity.  相似文献   

11.
In a screening for small-molecule compounds that alleviate the deleterious effects of external CaCl(2) on zds1 Delta strain yeast, we found 2-((1-(hydroxymethyl) cyclohexyl) methyl) naphthalen-1-ol (NKH-7) to be an active compound. NKH-7 also inhibited cell growth at higher concentrations. To identify its target in growth inhibition, we isolated NKH-7-resistant mutants and selected those mutants that exhibited dominant or semi-dominant resistance specifically to NKH-7. By gene cloning, a TUB1 mutant gene encoding alpha-tubulin with a Ser248Pro mutation was identified. Deletion of the TUB3 gene, a minor gene encoding alpha-tubulin, led to supersensitivity to NKH-7. Cellular tubulin-containing arrays as visualized by green fluorescent protein (GFP)-labeled alpha-tubulin diminished rapidly on exposure to the inhibitor. The mutation was situated proximal to the alpha-beta interface of alpha-tubulin in microtubule protofilaments, suggesting the possibility that NKH-7 affects the hydrolysis of GTP bound to beta-tubulin. A functional connection perhaps exists between the tubulin inhibition and Ca(2+)-dependent cell-cycle regulation.  相似文献   

12.
13.
beta-tubulin of budding yeast Saccharomyces cerevisiae is a polypeptide of 457 amino acids encoded by the unique gene TUB2. We investigated the function of the carboxy-terminal part of yeast beta-tubulin corresponding to the carboxy-terminal variable domain of mammalian and avian beta-tubulins. The GAA codon for Glu-431 of TUB2 was altered to TAA termination codon by using in vitro site-directed mutagenesis so that the 27-amino acid residues of the carboxyl terminus was truncated when expressed. The mutagenized TUB2 gene (tub2(T430)) was introduced into a haploid strain in which the original TUB2 gene had been disrupted. The tub2(T430) haploid strain grows normally less than 30 but not at 37 degrees C. The truncation of the carboxyl terminus caused hypersensitivity to antimitotic drugs and low spore viability at the permissive temperature for vegetative growth. Immunofluorescence labeling with antitubulin antibody and DNA staining with 4',6'-diamidino-2-phenylindole showed that in these cells at 37 degrees C, formation of spindle microtubules and nuclear division was inhibited and cytoplasmic microtubule distribution was aberrant. These results suggest that functions of the carboxy-terminal domain of yeast beta-tubulin are necessary for cells growing under suboptimal growth conditions although it is not essential for growth under the optimal growth conditions. Cells bearing tub2(411), a tub2 gene in which the GAA codon for Glu-412 was altered to TAA were no more viable at any temperature. In addition, a haploid strain carrying two functional beta-tubulin genes is not viable.  相似文献   

14.
C Rdel  T Jupitz    H Schmidt 《Nucleic acids research》1997,25(14):2823-2827
In human cells DNA damage caused by UV light is mainly repaired by the nucleotide excision repair pathway. This mechanism involves dual incisions on both sides of the damage catalyzed by two nucleases. In mammalian cells XPG cleaves 3' of the DNA lesion while the ERCC1-XPF complex makes the 5' incision. The amino acid sequence of the human excision repair protein ERCC1 is homologous with the fission yeast Swi10 protein. In order to test whether these proteins are functional homologues, we overexpressed the human gene in a Schizosaccharomyces pombe swi10 mutant. A swi10 mutation has a pleiotropic effect: it reduces the frequency of mating type switching (a mitotic transposition event from a silent cassette into the expression site) and causes increased UV sensitivity. We found that the full-length ERCC1 gene only complements the transposition defect of the fission yeast mutant, while a C-terminal truncated ERCC1 protein also restores the DNA repair capacity of the yeast cells. Using the two-hybrid system of Saccharomyces cerevisiae we show that only the truncated human ERCC1 protein is able to interact with the S . pombe Rad16 protein, which is the fission yeast homologue of human XPF. This is the first example yet known that a human gene can correct a yeast mutation in nucleotide excision repair.  相似文献   

15.
The Drosophila Inscuteable protein acts as a key regulator of asymmetric cell division during the development of the nervous system [1] [2]. In neuroblasts, Inscuteable localizes into an apical cortical crescent during late interphase and most of mitosis. During mitosis, Inscuteable is required for the correct apical-basal orientation of the mitotic spindle and for the asymmetric segregation of the proteins Numb [3] [4] [5], Prospero [5] [6] [7] and Miranda [8] [9] into the basal daughter cell. When Inscuteable is ectopically expressed in epidermal cells, which normally orient their mitotic spindle parallel to the embryo surface, these cells reorient their mitotic spindle and divide perpendicularly to the surface [1]. Like the Inscuteable protein, the inscuteable RNA is asymmetrically localized [10]. We show here that inscuteable RNA localization is not required for Inscuteable protein localization. We found that a central 364 amino acid domain - the Inscuteable asymmetry domain - was necessary and sufficient for Inscuteable localization and function. Within this domain, a separate 100 amino acid region was required for asymmetric localization along the cortex, whereas a 158 amino acid region directed localization to the cell cortex. The same 158 amino acid fragment could localize asymmetrically when coexpressed with the full-length protein, however, and could bind to Inscuteable in vitro, suggesting that this domain may be involved in the self-association of Inscuteable in vivo.  相似文献   

16.
17.
In this paper we demonstrate that failure to complement between mutations at separate loci can be used to identify genes that encode interacting structural proteins. A mutation (nc33) identified because it failed to complement mutant alleles of the gene encoding the testis-specific beta 2-tubulin of Drosophila melanogaster (B2t) did not map to the B2t locus. We show that this second-site noncomplementing mutation is a missense mutation in alpha-tubulin that results in substitution of methionine in place of valine at amino acid 177. Because alpha- and beta-tubulin form a heterodimer, our results suggest that the genetic interaction, failure to complement, is based on the structural interaction between the protein products of the two genes. Although the nc33 mutation failed to complement a null allele of B2t (B2tn), a deletion of the alpha-tubulin gene to which nc33 mapped complemented B2tn. Thus, the failure to complement appears to require the presence of the altered alpha-tubulin encoded by the nc33 allele, which may act as a structural poison when incorporated into either the tubulin heterodimer or microtubules.  相似文献   

18.
The yeast Mre11 is a multi-functional protein and is known to form a protein complex with Rad50 and Xrs2. In order to elucidate the relationship between Mre11 complex formation and its mitotic functions, and to determine domain(s) required for Mre11 protein interactions, we performed yeast two-hybrid and functional analyses with respect to Mre11 DNA repair and telomere maintenance. Evidence presented in this study indicates that the N-terminal region of Mre11 constitutes the core homo-dimerization and hetero-dimerization domain and is sufficient for Mre11 DNA repair and maintaining the wild-type telomere length. In contrast, a stretch of 134 amino acids from the extreme C-terminus, although essential for achieving a full level of self-association, is not required for the aforementioned Mre11 mitotic functions. Interestingly, deletion of these same 134 amino acids enhanced the interaction of Mre11 with Rad50 and Xrs2, which is consistent with the notion that this region is specific for meiotic functions. While Mre11 self-association alone is insufficient to provide the above mitotic activities, our results are consistent with a strong correlation between Mre11-Rad50-Xrs2 complex formation, mitotic DNA repair and telomere maintenance. This correlation was further strengthened by analyzing two mre11 phosphoesterase motif mutants ( mre11-2 and rad58S ), which are defective in DNA repair, telomere maintenance and protein interactions, and a rad50S mutant, which is normal in both complex formation and mitotic functions. Together, these results support and extend a current model regarding Mre11 structure and functions in mitosis and meiosis.  相似文献   

19.
H S Ko  P Fast  W McBride  L M Staudt 《Cell》1988,55(1):135-144
The homeobox domain is shared by Drosophila homeotic proteins, yeast mating type proteins, and some functionally uncharacterized mammalian proteins. A lymphoid-restricted human protein that binds to the immunoglobulin octamer regulatory motif was shown to contain an amino acid sequence that has 33% amino acid identity with the consensus sequence of the previously cloned homebox domains. This homeobox gene was localized to chromosome 19, thus mapping separately from other human homebox genes. A mutant protein containing amino acid substitutions within a putative helix-turn-helix motif in the homeobox domain did not bind DNA detectably. This human homeobox protein was shown to bind the same DNA sequence as the homeobox domains of the yeast mating type proteins and Drosophila homeotic protein, suggesting that homeobox proteins may have closely related DNA binding characteristics.  相似文献   

20.
We have constructed a Xenopus oocyte cDNA library in a Saccharomyces cerevisiae expression vector and used this library to isolate genes that can function in yeast cells to suppress the temperature sensitive [corrected] defect of the cdc15 mutation. Two maternally expressed Xenopus cDNAs which fulfill these conditions have been isolated. One of these clones encodes Xenopus N-ras. In contrast to the yeast RAS genes, Xenopus N-ras rescues the cdc15 mutation. Moreover, overexpression of Xenopus N-ras in S. cerevisiae does not activate the RAS-cyclic AMP (cAMP) pathway; rather, it results in decreased levels of intracellular cAMP in both mutant cdc15 and wild-type cells. Furthermore, we show that lowering cAMP levels is sufficient to allow cells with a nonfunctional Cdc15 protein to complete the mitotic cycle. These results suggest that a key step of the cell cycle is dependent upon a phosphorylation event catalyzed by cAMP-dependent protein kinase. The second clone, beta TrCP (beta-transducin repeat-containing protein), encodes a protein of 518 amino acids that shows significant homology to the beta subunits of G proteins in its C-terminal half. In this region, beta Trcp is composed of seven beta-transducin repeats. beta TrCP is not a functional homolog of S. cerevisiae CDC20, a cell cycle gene that also contains beta-transducin repeats and suppresses the cdc15 mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号