首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of cell wall teichoic acids was studied by chemical methods and NMR spectroscopy in the type strains of two actinomycete species of the "Streptomyces griseoviridis" phenetic cluster: Streptomyces daghestanicus and Streptomyces murinus. S. daghestanicus VKM Ac-1722T contained two polymers having a 1,5-poly(ribitol phosphate) structure. In one of them, the ribitol units had alpha-rhamnopyranose and 3-O-methyl-alpha-rhamnopyranose substituents; in the other, each ribitol unit was carrying 2,4-ketal-bound pyruvic acid. Such polymers were earlier found in the cell walls of Streptomyces roseolus and Nocardiopsis albus, respectively; however, their simultaneous presence in the cell wall has never been reported. The cell wall teichoic acid of Streptomyces murinus INA-00524T was is a 1,5-poly(glucosylpolyol phosphate), whose repeating unit was [-6)-beta-D-glucopyranosyl-(1 --> 2)-glycerol phosphate-(3-P-]. Such a teichoic acid was earlier found in Spirilliplanes yamanashiensis. The 13C NMR spectrum of this polymer is presented for the first time. The results of the present investigation, together with earlier published data, show that the type strains of four species of the "Streptomyces griseoviridis" phenetic cluster differ in the composition and structure of their teichoic acids; thus, teichoic acids may serve as chemotaxonomic markers of the species.  相似文献   

2.
Summary We have described the observation that Streptomyces griseus colonies grow group-wise on agar media containing streptomycin. We have found that this phenomenon is due to a substance (s) produced by germinating Str. griseus spores in media containing streptomycin, and this substance made the neighbouring spores more tolerant to increasing streptomycin concentrations. The substance is produced specifically by Str. griseus strains. The substance has probably a great molecular size, is thermolabile, not a nucleic acid and the applied enzymes did not inactivate it. Some investigated enzyme-poisons did not influence either its production or its effect on Str. griseus spores. We succeeded in carrying over the substance into liquid phase and separate it from the producing culture and this enables us to furterh purification and investigation of the substance.  相似文献   

3.
The structure of cell wall teichoic acids was studied by chemical methods and NMR spectroscopy in the type strains of two actinomycete species of the Streptomyces griseoviridis phenetic cluster: streptomyces daghestanicus and streptomyces murinus. S. daghestanicus VKM Ac-1722t contained two polymers having a 1,5-poly(ribitol phosphate) structure. In one of them, the ribitol units had -rhamnopyranose and 3-O-methyl--rhamnopyranose substituents; in the other, each ribitol unit was carrying 2,4-ketal-bound pyruvic acid. Such polymers were earlier found in the cell walls of Streptomyces roseolus and Nocardiopsis albus, respectively; however, their simultaneous presence in the cell wall has never been reported. The cell wall teichoic acid of Streptomyces murinus INA-00524T was a 1,5-poly(glucosylpolyol phosphate), whose repeating unit was [-6)--D-glucopyranosyl-(12)-glycerol phosphate-(3-P-]. Such a teichoic acid was earlier found in Spirilliplanes yamanashiensis. The 13C NMR spectrum of this polymer is presented for the first time. The results of the present investigation, together with earlier published data, show that the type strains of four species of the Streptomyces griseoviridis phenetic cluster differ in the composition and structure of their teichoic acids; thus, teichoic acids may serve as chemotaxonomic markers of the species.Translated from Mikrobiologiya, Vol. 74, No. 1, 2005, pp. 48–54.Original Russian Text Copyright © 2005 by Streshinskaya, Kozlova, Alferova, Shashkov, Evtushenko.  相似文献   

4.
Examination was made on the morphological and cultural characteristics of the lutease-producing Streptomyces strain No. OP-4-5 isolated from a dust. The strain was identified as Streptomyces griseus. In addition, it was proved that 2 strains of Streptomyces griseus produce lutease in a test for lutease production in Streptomyces species. Streptomyces parvus and Streptomyces niveoruber also produce the same enzyme. However, production of the lutease by these 4 strains was less than that of produced by Streptomyces griseus strain No. OP-4-5 which was isolated by the authors.  相似文献   

5.
A column of insoluble concanavalin A was prepared by coupling the protein to cyanogen bromide-activated Sepharose. When autolysates of Bacillus subtilis 168 cell walls were passed over the column, the alpha glucosylated teichoic acid component of the cell wall was retained. The teichoic acid could be eluted with dilute alpha-methylglucopyranose. The teichoic acid prepared by affinity chromatography from cell wall autolysates had a higher sedimentation rate than teichoic acids obtained by conventional methods.

Several authors have shown that concanavalin A (con A) forms complexes with alpha-glucosylated teichoic acids1–3. Doyle and Birdsell1 found that the teichoic acid of Bacillus subtilis 168 (trp C2) would precipitate with con A at neutral pH in dilute buffer. The formation of a precipitate was inhibited by sugars which bind to the active site of con A. This observation suggested that it should be possible to purify the teichoic acid by affinity chromatography using insoluble con A as the affinity probe. Lloyd4 and Donnelly and Goldstein5 have successfully employed insoluble con A to purify polysaccharides and glycoproteins. In this communication, we describe conditions for the rapid purification of the alpha-glucosylated teichoic acid of B. subtilis 168. The teichoic acid prepared by this procedure appears to be less degraded than teichoic acids obtained by conventional methods.  相似文献   

6.
The cell wall of Fusarium oxysporum was digested with commercial Bacillus pumilus chitosanase. The chitosanase produced low molecular weight heterooligosaccharides consisting of GlcN and GlcNAc from the cell wall. A main component of the digestion products was identified as 2-amino-2-deoxy-β-d-glucopyranosyl-(1 →4)-2-acetamido-2-deoxy-d-glucopyranose. The chitosanase appeared to be more effective than Streptomyces griseus chitinase for cell wall digestion. Moreover, maltose was unexpectedly found in the digestion products, indicating that the cell wall contains α-1,4-linked glucan chain as a polysaccharide component.  相似文献   

7.
AmfS, a class III lantipeptide serves as a morphogen in Streptomyces griseus. Here, we constructed a high production system of AmfS in S. griseus. We isolated S. griseus Grd1 strain defective in glucose repression of aerial mycelium formation and found it suitable for the overproduction of AmfS. Two expression vectors carrying the strong and constitutive ermE2 promoter were constructed using a multicopy number plasmid, pIJ702. The use of the Grd1 strain combined with the expression vectors enabled high production of AmfS by S. griseus into its culture broth. The expression system was also effective for the generation of abundant AmfS derived from Streptomyces avermitilis. In addition, site-directed mutagenesis revealed the amino acid residues essential for the morphogen activity of AmfS. These results indicate that the constructed system enables efficient production of class III lantipeptides by Streptomyces.  相似文献   

8.
The composition of cell walls was comparatively studied in Streptomyces roseoflavus var. roseofungini 1128 and in its variant 1-68. In the logarithmic phase of growth, the content of teichoic acid in the cell wall of the parent culture was four times as high as in the cell wall of the variant. The cell walls of the parent culture contained 5 to 7 times more O-lysyl residues not only due to a higher content of teichoic acid in the walls but also owing to a lower content of lysyl groups in the teichoic acid of the variant. An additional polysaccharide comprising galactose and glucosamine was found in the cell wall of the variant but not in the parent strain. The peptidoglycan of the both cultures had a structure typical of Streptomyces spp.; its content in the cell walls of the two cultures was identical (ca. 50% of the dry cell wall biomass weight). The results are discussed in connection with the peculiarities of the variant hyphal septation.  相似文献   

9.
A cell wall component that bound to HeLa cells (HeLa cell-binding CWC) was isolated from a clinical isolate of Staphylococcus aureus. The HeLa cell-binding CWC was resistant to heat (100 C, 1 hr) and proteases, did not stain with Coomassie Brilliant Blue R-250 on SDS-PAGE but stained as a broad band with antiserum against the strain on Western blots. These data suggest that the HeLa cell-binding CWC is not a protein, and may be teichoic acid. Purified teichoic acid bound to HeLa cells, whereas fractions without teichoic acid did not. In Western blots, HeLa cell-binding CWC appeared as a broad band of less than 35 kDa, similar to that of purified teichoic acid. These data suggest that the HeLa cell-binding CWC obtained in this study is teichoic acid. Teichoic acid inhibited S. aureus adherence to HeLa cells and bound to the cells time and dose dependently, in a saturable and reversible manner, and therefore appears to be an adhesin of S. aureus to HeLa cells.  相似文献   

10.
Chemical composition of variants of aerobic actinomycetes   总被引:3,自引:0,他引:3       下载免费PDF全文
It has been shown previously that aerobic actinomycetes can be separated into four main groups on the basis of their cell wall composition. Six representatives of aerobic actinomycetes (Nocardia asteroides and Micropolyspora brevicatena, cell wall type IV; N. madurae, Microbispora rosea, cell wall type III; Actinoplanes sp., cell wall type II; Streptomyces griseus, cell wall type I) were subjected to selecting agents which permitted the isolation of stable variants morphologically different from the parent strain. Whole cell analyses of 134 substrains from the six parents revealed no significant change in the isomeric form of diaminopimelic acid or in sugar constituents. Analyses of cell wall preparations from 52 of these did not reveal any change in the diagnostic constituents of their murein or polysaccharides.  相似文献   

11.
The isolated cell wall of Streptomyces griseus 52–1 strain labelled with fluorescein isothiocyanate (FITC) and containing wall-bound autolytic enzyme was lysed as a function of different cations. The autolysis was accelerated by aminoglycoside antibiotics (streptomycin and the structurally closely related neomycin) which have a polycationic character. Since this strain is a streptomycin producer it is suggested that streptomycin may have a regulatory function on autolysis.  相似文献   

12.
Bacteriophage-resistant strains of Staphylococcus aureus H were isolated after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Cell walls isolated from about half of these resistant strains were incapable of inactivating phages and were shown to lack N-acetyl-d-glucosamine (GlcNAc) in their cell wall teichoic acid. Apart from the lack of GlcNAc, two of these mutant strains were deficient in cell wall phosphorus and ester-linked d-alanine. These two strains were also found to be resistant to both phage K and a host-range mutant isolated from the parent phage. These two phages could lyse the other phage-resistant mutants which lacked GlcNAc in their teichoic acid. Cell walls from the remaining phage-resistant mutant strains did inactivate phages and were found to have normal cell wall teichoic acid. Although GlcNAc in teichoic acid was required for phage inactivation, no difference in phage inactivation ability was detected with cell walls isolated from strains of S. aureus having exclusively alpha- or exclusively beta-linked GlcNAc in their cell wall teichoic acid.  相似文献   

13.
Investigations of cell wall teichoic acid structures of various staphylococci were carried out by a rapid method based on the gas-liquid chromatographic separation of products obtained after treatment of phenol-extracted cells with 70% hydrofluoric acid. In most of the strains teichoic acids of the poly(glycerolphosphate) and/or poly(ribitolphosphate) type were found. Teichoic acids of the poly(glycerolphosphate-N-acetylglucosaminephosphate) type and polymers consisting of N-acetylglucosaminephosphate were present in few strains.The results obtained by the rapid chemical screening method were compared with data obtained by serological analysis of teichoic acid structures using specific antisera and the lectin wheat germ agglutinin. Teichoic acid components occurring in low concentrations could only be detected with the chemical and not with the serological method. A number of strains of species of the genus Staphylococcus have been studied using these rapid methods. With a few exceptions, the teichoic acid structure proved to be a constant marker within a given species.Abbreviations used CIE counnter immunoelectrophoresis - GalNAc N-acetylgalactosamine - Glc glucose - GlcNAc N-acetylglucosamine - Gro glycerol - Rit ribitol  相似文献   

14.
Summary Liquoid (polyanethole sulfonate) was neither capable of influencing the growth nor the viability of staphylococci. But liquoid induced a suppression of the activity of different autolytic wall systems of normally growing staphylococci, i.e., autolysins which participate in cross wall separation as well as autolysins which are responsible for cell wall turnover. Additionally, the lysostaphin-induced wall disintegration of staphylococci was inhibited by liquoid.However, no indication could be found for a direct inhibition of lytic wall enzymes by liquoid; rather an interaction of liquoid with the target structure for the autolytic wall enzymes, the cell wall itself, was postulated. On the basis of the experimental data with the teichoic acid- mutant S. aureus 52A5 the sites of wall teichoic acid were supposed to be an important target for the binding of liquoid to the staphylococcal cell wall.  相似文献   

15.
Streptomyces albovinaceus, Streptomyces caviscabies, Streptomyces griseus, Streptomyces setonii, and Streptomyces virginiae selected as antagonists of Moniliophthora (ex Crinipellis) perniciosa, the causal agent of cacao Witches’ broom, were examined in vitro to detect production of chitinases, β-1,3-glucanases, and cellulases. All the species produced chitinases, but not β-1,3-glucanases or cellulases, when grown on a liquid mineral medium containing glucose, colloidal chitin, or cell walls of M. perniciosa as a carbon source. There were no quantitative differences among species in the production of chitinase, however, the germination inhibition of basidiospores of M. perniciosa was higher when they were cultivated using glucose as a carbon source, followed by colloidal chitin and cell walls. All the species also produced hydroxymate type siderophores in similar quantities, and the quantity of siderophores did not correlate with the inhibition of basidiospore germination. The germination inhibition was more pronounced when S. albovinaceus, S. griseus, and S. virginiae were cultivated on iron-deficient medium, suggesting involvement of siderophores in the antagonism by these species of actinomycetes.  相似文献   

16.
Commercial enzyme preparations frequently used in the preparation of fungal cell walls, viz., proteases, a lipase, and a phosphatase, were examined for the presence of contaminating glycohydrolase activity, since such activity could result not only in the removal of cytoplasmic constituents but also in the removal of portions of the wall itself. Glucosidase activities were detected in a protease of fungal origin, in a lipase from wheat germ, and in a phosphatase from potatoes. Additionally, two commercial protease preparations from Streptomyces griseus contained β-1,3-glucanase activity in significant amounts, a third contained trace amounts of the glucanase, but a fourth was totally free of glycohydrolase activity. The protease preparations from S. griseus released laminaribiose from yeast-phase cell walls of Histoplasma capsulatum chemotypes I and II, but only trace amounts of glucose were released. One protease was examined more closely and was found to be optimally active on laminarin at pH 5.5 and 50°C. It was also highly active on the same substrate at pH 8.0 and 37°C, however. A protease preparation from Aspergillus oryzae released glucose from the yeast-phase cell walls of H. capsulatum chemotypes I and II as well as from cell walls of Blastomyces dermatitidis, suggesting that the preparation contained both α- and β-glucanases.  相似文献   

17.
Summary In the present work the chemical cell wall composition and some other biochemical characteristics were studied in staphylococci with the intention of utilizing the data obtained in their classification.According to the cell wall peptidoglycans and teichoic acids, the 130 strains of staphylococci studied are divided into 10 major groups. This division of staphylococci into groups is in good agreement with their present classification only in some cases. All of the 47Staphylococcus aureus strains contain a cell wall peptidoglycan of thel-Lys-Gly5–6 type and ribitol teichoic acid. Coagulase-negative staphylococci are more heterogeneous and are divided according to their cell wall composition into 9 major groups. 21 strains of them are classified asS. epidermidis sensu stricto. They form a natural group and are distinguished by the occurrence of thel-Lys-Gly4–5,l-Ser0.5–1.8 peptidoglycan type, glycerol teichoic acid and anl-lactate dehydrogenase which is activated by fructose-1,6-diphosphate. 8 strains with peptidoglycan of thel-Lys-Gly4–5,l-Ser0.5–1.8 type and ribitol teichoic acid are labeled asS. saprophyticus. The remaining groups have not been given species names and require further extensive comparative study.  相似文献   

18.
Summary A localized region of low DNA sequence homology was revealed in two strains of Bacillus subtilis by a specific 100-fold reduction in transformation by W23 DNA of the tag1 locus, a teichoic acid marker of strain 168. Fifty nine rare recombinants, hybrid at this locus, had all acquired donor-specific phage resistance characters, while losing those specific to the 168 recipient. Chemical analysis of isolated cell walls showed that these modifications are associated with major changes in the wall teichoic acids. Genetic analysis demonstrated that determinants for the ribitol phosphate polymer of strain W23 had been transferred to 168, replacing those for the glycerol phosphate polymer in the recipient. All W23 genes coding for poly(ribitol phosphate) in the hybrids and those specifying anionic wall polymers in strain 168 are clustered near hisA. In addition to tag1, the region exchanged extends just beyond gtaA in some hybrids, whereas in others it may include the more distant gtaB marker, encompassing a region sufficient to contain at least 20 average-sized genes. Surface growth, flagellation, transformability and sporulation all appeared normal in hybrids examined. Recombinants without a major wall teichoic acid from either strain were not found, suggesting that an integral transfer of genes for poly(ribitol phosphate) from W23 had occurred in all hybrids isolated. We interpret these results as indicating an essential role for anionic wall polymers in the growth of B. subtillis.  相似文献   

19.
Lapstatin, a low-molecular-weight aminopeptidase inhibitor, was purified to homogeneity from Streptomyces rimosus culture filtrates. The purification procedure included extraction with methanol, followed by chromatography on Dowex 50WX4, AG50WX4, and HPLC RP C18 columns. By amino acid analysis, mass spectrometry, and NMR spectroscopy, the structure of lapstatin was shown to be 3-amino-2-hydroxy-4-methylpentanoylvaline. Lapstatin inhibited the extracellular leucine aminopeptidases from Streptomyces rimosus, Streptomyces griseus, and Aeromonas proteolytica with an IC50 in the range of 0.3–2.4 μM. IC50 values for other enzymes tested were at least tenfold higher. Leucine aminopeptidase from Streptomyces griseus was inhibited in a competitive manner, with an inhibition constant of 5 × 10–7 M. Lapstatin is the first low-molecular-weight compound isolated from streptomycetes shown to inhibit an autogenous aminopeptidase. Received: 7 December 1998 / Accepted: 29 March 1999  相似文献   

20.
Production of proteins in secretary form is one of the important factors affecting fermentation. The Tat (twin arginine translocation) protein secretion system, which includes the proteins TatA, TatB, and TatC, was identified in the genomic sequence of Streptomyces griseus IFO13350. The tatA and tatC genes were organized into a polycistronic operon, whereas tatB was located separately on the chromosome. Comparison of amino acid sequences suggested that TatC was a membrane-spanning protein, whereas TatA and TatB were found to be cytoplasmic proteins. Analysis of extracellular proteins and N-terminal amino acid sequencing revealed that secretion of SGR5556 was significantly enhanced by overexpression of TatAC in S. griseus HH1. Further, enzymatic study showed that SGR5556 encoded a glycerophosphoryl diester phosphodiesterase. In addition, other hydrolase activities, such as those of amylase, total protease, metalloprotease, trypsin, chymotrypsin, and Leuaminopeptidase, were also enhanced by 3, 3, 2.6, 2.3, 5.4, and 2.5 fold, respectively, in S. griseus upon TatAC overexpression. Overexpression of TatAC induced the production of a greenish-yellow pigment in S. griseus HH1 as well as more abundant sporulation at an earlier stage in Streptomyces coelicolor A3(2). In silico analysis by TatFIND, SignalP, and TMHMM identified 19 binding proteins, 28 enzymatic proteins, and 27 other proteins with unknown functions as putative TatAC-dependent secretary proteins. These results clearly indicate that TatA and TatC constitute a functional Tat system in S. griseus. Additionally, the S. griseus Tat system can be useful for the production of valuable proteins, including many hydrolytic enzymes and candidates of Tat-dependent secretary proteins, under industrial conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号