首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient method for Pichia cell disruption that employs an aminopropyl magnesium phyllosilicate (AMP) clay-assisted glass beads mill is presented. AMP clay is functionalized nanocomposite resembling the talc parent structure Si8Mg6O20(OH)4 that has been proven to permeate the bacterial membrane and cause cell lysis. The recombinant capsid protein of cowpea chlorotic mottle virus (CCMV) expressed in Pichia pastoris GS115 was used as demonstration system for their ability of self-assembly into icosahedral virus-like particles (VLPs). The total protein concentration reached 4.24 mg/ml after 4 min treatment by glass beads mill combined with 0.2 % AMP clay, which was 11.2 % higher compared to glass beads mill only and the time was half shortened. The stability of purified CCMV VLPs illustrated AMP clay had no influence on virus assembly process. Considering the tiny amount added and simple approach of AMP clay, it could be a reliable method for yeast cell disruption.  相似文献   

2.
Baker’s yeast was disrupted in a 1.4-L stainless steel horizontal bead mill under a continuous recycle mode using 0.3 mm diameter zirconia beads as abrasive. A single pass in continuous mode bead mill operation liberates half of the maximally released protein. The maximum total protein release can only be achieved after passaging the cells 5 times through the disruption chamber. The degree of cell disruption was increased with the increase in feeding rate, but the total protein release was highest at the middle range of feeding rate (45 L/h). The total protein release was increased with an increase in biomass concentration from 10 to 50% (w/v). However, higher heat dissipation as a result of high viscosity of concentrated biomass led to the denaturation of labile protein such as glucose 6-phosphate dehydrogenase (G6PDH). As a result the highest specific activity of G6PDH was achieved at biomass concentration of 20% (ww/v). Generally, the degree of cell disruption and total protein released were increased with an increase in impeller tip speed, but the specific activity of G6PDH was decreased substantially at higher impeller tip speed (14 m/s). Both the degree of cell disruption and total protein release increased, as the bead loading increased from 75 to 85% (v/v). Hence, in order to obtain a higher yield of labile protein such as G6PDH, the yeast cell should not be disrupted at biomass concentration and impeller tip speed higher than 20% (w/v) and 10 m/s, respectively.  相似文献   

3.
Baker’s yeast was disrupted in a 1.4-L stainless steel horizontal bead mill under a continuous recycle mode using 0.3 mm diameter zirconia beads as abrasive. A single pass in continuous mode bead mill operation liberates half of the maximally released protein. The maximum total protein release can only be achieved after passaging the cells 5 times through the disruption chamber. The degree of cell disruption was increased with the increase in feeding rate, but the total protein release was highest at the middle range of feeding rate (45 L/h). The total protein release was increased with an increase in biomass concentration from 10 to 50% (w/v). However, higher heat dissipation as a result of high viscosity of concentrated biomass led to the denaturation of labile protein such as glucose 6-phosphate dehydrogenase (G6PDH). As a result the highest specific activity of G6PDH was achieved at biomass concentration of 20% (ww/v). Generally, the degree of cell disruption and total protein released were increased with an increase in impeller tip speed, but the specific activity of G6PDH was decreased substantially at higher impeller tip speed (14 m/s). Both the degree of cell disruption and total protein release increased, as the bead loading increased from 75 to 85% (v/v). Hence, in order to obtain a higher yield of labile protein such as G6PDH, the yeast cell should not be disrupted at biomass concentration and impeller tip speed higher than 20% (w/v) and 10 m/s, respectively.  相似文献   

4.
Disintegration of microorganisms in a continuously working industrial homogenizer has been studied. The homogenizer consists of rotating discs in a cylinder filled with glass beads. Different parameters for disintegration of baker's yeast were investigated. The disintegration process is a first-order reaction and it is influenced by the flow rate of the suspension and by the agitator speed. At a flow rate of 200 liters/hr about 85% of the yeast cells can be disrupted in a single pass through the disintegrator. This type of disintegrator can be used for disruption of cells in order to produce single-cell protein, active enzymes and other valuable cell components.  相似文献   

5.
Suspensions of several yeast strains and bacterial species were disrupted in a continuously operating industrial agitator mill of 22.7 litre internal working volume. The influence of agitator speed, flow rate, concentration of microorganisms in the slurry, packing density of glass beads and bead diameter on the disruption process was studied using baker's yeast (Saccharomyces cerevisiae). Cell disintegration was followed by assaying the appearance of protein and the activities of d-glucose-6-phosphate dehydrogenase [d-glucose-6-phosphate:NADP+ oxidoreductase, EC 1.1.1.49] and α-d-glucosidase [α-d-glucoside glucohydrolase, EC 3.2.1.20] in the soluble fraction. The best operating conditions for the disintegration of baker's yeast with respect to activity yield appeared to be at a rotational speed of 1100 rev/min, a flow rate of 100 litre h?1 and a cell concentration of 40% (w/v). The location of the desired enzyme in the cell is of importance for the choice of bead diameter and packing density of the glass beads. Temperature increase and power consumption during disintegration are also strongly influenced by the bead loading in the mill. With optimized parameters, 200 kg baker's yeast can be processed per hour with a degree of disintegration >85%. The disruption process in the mill was found to be very effective for several yeast species tested, e.g. Saccharomyces cerevisiae, Saccharomyces carlsbergensis, and Candida boidinii. The usefulness of the Netzsch LME 20-mill for the disruption of bacteria species was demonstrated with Escherichia coli, Brevibacterium ammoniagenes, Bacillus sphaericus and Lactobacillus confusus. As expected, the mill capacity for bacterial disruption was significantly smaller than for the yeast. Between 10 and 20 kg per h bacteria may be processed, depending on the organism.  相似文献   

6.
Microbial cells were disintegrated in a new type of rotary disintegrator with a disc stirrer by a combination of shear force layers, collisions, and rolling of glass beads which were brought into motion by the stirrer. The rate of disintegration at a given dry bed volume of Ballotini beads and a given volume of cell suspension is proportional to the peripheral velocity of the stirrer up to 18 m/sec. Horizontal arrangement of the stirrer increases the effectiveness about five times; 100% disintegration of yeast cells was achieved under optimal conditions within 72 sec at a concentration of 3.5g (dry weight)/100 ml of suspension, and within 96 sec at a concentration of 10.5g (dry weight)/100ml. At 17.5 g (dry weight)/100 ml, the stirrer began to slip. The cell walls of yeast were obtained at the desired degree of crushing and the course of purification was determined by infrared spectral analysis.  相似文献   

7.
This report describes a modified, cost-effective method of cell wall disruption for the yeast Candida spp., which employs the use of glass beads in a simple sorbitol lysis buffer. This method can be used in conjunction with a commercial RNA or genomic DNA isolation method to obtain high-quality RNA or DNA.  相似文献   

8.
9.
Toward the development of an in vitro cultivation of marine sponge cells for sustainable production of bioactive metabolites, the attachment characteristics of marine sponge cells of Hymeniacidon perleve on three types of microcarriers, Hillex, Cytodex 3, and glass beads, were studied. Mixed cell population and enriched cell fractions of specific cell types by Ficoll gradient centrifugation (6%/8%/15%/20%) were also assessed. Cell attachment ratio (defined as the ratio of cells attached on microcarrier to the total number of cells in the culture) on glass beads is much higher than that on Cytodex 3 and Hillex for both mixed cell population and cell fraction at Ficoll 15-20% interface. The highest attachment ratio of 41% was obtained for the cell fraction at Ficoll 15-20% interface on glass beads, which was significantly higher than that of a mixed cell population (18%). The attachment kinetics on glass beads indicated that the attachment was completed within 1 h. Cell attachment ratio decreases with increase in cell-to-microcarrier ratio (3-30 cells/bead) and pH (7.6-9.0). The addition of serum and BSA (bovine serum albumin) reduced the cell attachment on glass beads.  相似文献   

10.
A simple and small-scale method for the preparation of homogenate from yeast was developed. The principle of this new method involves the shaking of a small amount of yeast-cell suspension with glass beads on a tower-shaped mixer. When this method is used the cells in 1 ml of cell suspension are broken down and 14 samples can be simultaneously processed under controlled conditions. The degree of cell breakdown, the amount of soluble protein liberated from the cells, and the increase in each enzyme activity in prepared homogenate correlated to the shaking time: maximum values were obtained at 20 min. Enzyme activities in the homogenate were equivalent to or higher than that procured with former methods. This new method is applicable to various species of yeasts.  相似文献   

11.
This report describes a modified, cost-effective method of cell wall disruption for the yeast Candida spp., which employs the use of glass beads in a simple sorbitol lysis buffer. This method can be used in conjunction with a commercial RNA or genomic DNA isolation method to obtain high-quality RNA or DNA.  相似文献   

12.
DNA isolation from some fungal organisms is difficult because they have cell walls or capsules that are relatively unsusceptible to lysis. Beginning with a yeast Saccharomyces cerevisiae genomic DNA isolation method, we developed a 30-min DNA isolation protocol for filamentous fungi by combining cell wall digestion with cell disruption by glass beads. High-quality DNA was isolated with good yield from the hyphae of Crinipellis perniciosa, which causes witches' broom disease in cacao, from three other filamentous fungi, Lentinus edodes, Agaricus blazei, Trichoderma stromaticum, and from the yeast S. cerevisiae. Genomic DNA was suitable for PCR of specific actin primers of C. perniciosa, allowing it to be differentiated from fungal contaminants, including its natural competitor, T. stromaticum.  相似文献   

13.
A method based on the survival of yeast cells subjected to an ethanol or heat shock was utilized to compare the stress resistance of free and carrageenan-immobilized yeast cells. Results demonstrated a significant increase of yeast survival against ethanol for immobilized cells as compared to free cells, while no marked difference in heat resistance was observed. When entrapped cells were released by mechanical disruption of the gel beads and submitted to the same ethanol stress, they exhibited a lower survival rate than entrapped cells, but a similar or slightly higher survival rate than free cells. The incidence of ethanol- or heat-induced respiratory-deficient mutants of entrapped cells was equivalent to that of control or non-stressed cells (1.3 ± 0.5%) whereas ethanol- and heat-shocked free and released cells exhibited between 4.4% and 10.9% average incidence of respiration-deficient mutants. It was concluded that the carrageenan gel matrix provided a protection against ethanol, and that entrapped cells returned to normal physiological behaviour as soon as they were released. The cell growth rate was a significant factor in the resistance of yeast to high ethanol concentrations. The optimum conditions to obtain reliable and reproducible results involved the use of slow-growing cells after exhaustion of the sugar substrate.  相似文献   

14.
This study was undertaken to determine the nature of the antigens recognized in allogeneic and syngeneic mixed leukocyte reactions (MLR). Specifically, we wished to determine whether Ia antigens alone were recognized by MLR-reactive T cells, or whether the specificity was determined by the corecognition of non-MHC antigens together with syngeneic or allogeneic Ia. To do this we used 11 T cell hybrids that were characterized as being specific for Iad and were tested their capacity to respond to isolated I-Ad or I-Ed that had been incorporated into liposomes and had bound to the surface of glass beads. Of nine alloreactive T cell hybrids (five I-Ad-and four I-Ed-specific), seven were shown to be responsive to the relevant isolated Ia antigen on glass beads. Also, two of two syngeneic I-Ad-specific T cell hybrids responded to I-Ad on the glass beads. One of the two alloreactive T cell hybrids that failed to respond to the relevant Ia antigen on glass beads was shown to be specific for an antigen in fetal calf serum (FCS) that was recognized in the context of the allo-Ia antigen (I-Ed), because when intact accessory cells were used, a response by this hybrid was only observed when FCS was present in the assay culture medium or when the accessory cells were pre-pulsed with FCS. The possible involvement of FCS antigens and non-Ia accessory cell antigens in the stimulation of the nine T cell hybrids that responded to isolated Ia on glass beads was evaluated. T cell hybrids that were grown and were tested in serum free medium were still capable of reacting to Ia on beads. The isolated Ia preparations used were greater than 90% pure, and their capacity to stimulate the T cell hybrids did not correlate with the degree of contamination with non-Ia proteins. We conclude from these studies that the majority of T cells that respond to allogeneic or syngeneic Ia bearing stimulator cells are specific for the Ia antigens themselves, and do not require the co-recognition of other non-Ia antigens; nor is there any requirement for Ia antigen processing for this recognition.  相似文献   

15.
16.
Exponentially growing and sporulating cells of Saccharomyces cerevisiae have been subjected to a variety of conditions which mechanically disrupt the cell in an effort to establish conditions which permit the recovery of intact polyribosomes. Grinding cells for 10 s with glass beads in a Bronwill cell homogenizer was sufficiently gentle to yield a polyribosome content in exponentially growing cells which was similar to values obtained from yeast spheroplasts. Polyribosome patterns in sporulating yeast were similar to those from exponentially growing cells. This technique is fast, reproducible over a wide range of cell concentrations, and eliminates the need to make spheroplasts to recover intact polyribosomes.  相似文献   

17.
A fragile cell wall mutant strain of Saccharomyces cerevisiae was prepared by a single step disruption of the KNR4 gene, which is involved in cell wall biosynthesis. The enhanced transport property of the mutant cell across the loosen cell wall was confirmed by the increased drug permeability. The KNR4-disrupted mutant strain released the ectopically expressed foreign protein more easily than the wild type by mechanical disruption of the cell walls using glass beads, demonstrating a potential utility of using the mutant strain as a host for the efficient extraction of recombinant proteins.  相似文献   

18.
Facile genetic and biochemical manipulation coupled with rapid cell growth and low cost of growth media has established the yeast Saccharomyces cerevisiae as a versatile workhorse. This article describes the use of yeast expression systems for the overproduction of complex multipolypeptide replication factors. The regulated overexpression of these factors in yeast provides for a readily accessible and inexpensive source of these factors in large quantities. The methodology is illustrated with the five-subunit replication factor C. Whole-cell extracts are prepared by blending yeast cells with glass beads or frozen yeast with dry ice. Procedures are described that maximize the yield of these factors while minimizing proteolytic degradation.  相似文献   

19.
Six different techniques were compared for the extraction and purification of polysomes from cells of the desiccation-tolerant cyanobacterium Nostoc commune UTEX 584. Cells resisted treatment with lysozyme, and methods which relied upon ‘gentle lysis’ resulted in inefficient cell breakage and poor yields of polysomes. In contrast, the passage of cells through a French Pressure Cell achieved complete disruption of even the most resistant cell aggregates but only monosomes and ribosomal subunits were recovered. The grinding of cells with glass beads in the presence of neutral detergents was the most successful of all the methods tested and resulted in efficient cell lysis with high yields of polysomes. Treatment of the cells with acetone, at 0°C, prior to homogenization, also resulted in good yields of polysomes although the degree of cell breakage was less than when the cells were ground. The choice of the grinding material, and the extent of the grinding, were both critical for polysome extraction. Grinding of cells with alumina and sterile sand gave very efficient cell breakage but no polysomes were recovered. Excessive grinding with glass beads led to a progressive loss of intact polysomes and concomitant increase in 70 S monosomes and subunits in cell extracts.This study provides data on various physical treatments and buffer compositions which may be used effectively in the isolation and purification of polysomal RNA from highly resistant bacterial cells. A method which relies upon the grinding of cells in the presence of neutral detergents will permit further studies of gene expression in cells which resist methods of ‘gentle lysis’.  相似文献   

20.
The efficacy of a simple laboratory method for cell disruption based on the shaking of glass beads on a rotary shaker was assessed in this study, via measurements of the release of total protein and interferon-α2b from E. coli. The optimum conditions for cell disruption were detected after 30 min of shaking in Tris-HCl buffer (pH 8) at 300 rpm with 1.5 g of glass beads (diameter: 0.5 mm) per mL of cell suspension volume. Three test runs were conducted under the above conditions and the maximum average protein release values were determined as 3.048, 3.564, and 3.015 mg/mL, respectively. The amount of protein release was comparable to the amount of protein release in ultrasonica-tion and glass bead vortexing procedures. The amount of interferon-α2b release in the ultrasonication, glass bead vortexing, and glass bead shaking trials were 240, 172, and 201 ng/mL, respectively. This method was shown to process between 1 and 10 mL of sample volume in a 50 mL Falcon tube without a great deal of deviation, and was able to handle in excess of 60 samples simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号