首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
ATP synthase couples transmembrane proton transport, driven by the proton motive force (pmf), to the synthesis of ATP from ADP and inorganic phosphate (P(i)). In certain bacteria, the reaction is reversed and the enzyme generates pmf, working as a proton-pumping ATPase. The ATPase activity of bacterial enzymes is prone to inhibition by both ADP and the C-terminal domain of subunit epsilon. We studied the effects of ADP, P(i), pmf, and the C-terminal domain of subunit epsilon on the ATPase activity of thermophilic Bacillus PS3 and Escherichia coli ATP synthases. We found that pmf relieved ADP inhibition during steady-state ATP hydrolysis, but only in the presence of P(i). The C-terminal domain of subunit epsilon in the Bacillus PS3 enzyme enhanced ADP inhibition by counteracting the effects of pmf. It appears that these features allow the enzyme to promptly respond to changes in the ATP:ADP ratio and in pmf levels in order to avoid potentially wasteful ATP hydrolysis in vivo.  相似文献   

3.
Previous studies in Trypanosoma cruzi have shown that intracellular pH homeostasis requires ATP and is affected by H(+)-ATPase inhibitors, indicating a major role for ATP-driven proton pumps in intracellular pH control. In the present study, we report the cloning and sequencing of a pair of genes linked in tandem (TcHA1 and TcHA2) in T. cruzi which encode proteins with homology to fungal and plant P-type proton-pumping ATPases. The genes are expressed at the mRNA level in different developmental stages of T. cruzi: TcHA1 is expressed maximally in epimastigotes, whereas TcHA2 is expressed predominantly in trypomastigotes. The proteins predicted from the nucleotide sequence of the genes have 875 and 917 amino acids and molecular masses of 96.3 and 101.2 kDa, respectively. Full-length TcHA1 and an N-terminal truncated version of TcHA2 complemented a Saccharomyces cerevisiae strain deficient in P-type H(+)-ATPase activity, the proteins localized to the yeast plasma membrane, and ATP-driven proton pumping could be detected in proteoliposomes reconstituted from plasma membrane purified from transfected yeast. The reconstituted proton transport activity was reduced by inhibitors of P-type H(+)-ATPases. C-terminal truncation did not affect complementation of mutant yeast, suggesting the lack of C-terminal autoinhibitory domains in these proteins. ATPase activity in plasma membrane from TcHA1- and (N-terminal truncated) TcHA2-transfected yeast was inhibited to different extents by vanadate, whereas the latter yeast strain was more resistant to extremes of pH, suggesting that the native proteins may serve different functions at different stages in the T. cruzi life cycle.  相似文献   

4.
The inhibition of the proton-pumping ATPases of yeast and oat root plasma membranes by dicyclohexylcarbodiimide (DCCD) can be correlated with the covalent incorporation of the inhibitor. Full inhibition of the yeast enzyme required the incorporation of about 1 mol DCCD/mol of the ATPase polypeptide of 100 kDa. A kinetic study of the interaction of DCCD with the yeast and oat ATPases indicates a second-order rate constant of about 500 M-1 min-1 and a stoichiometry of 1 mol DCCD/mol of enzyme, in agreement with the amount of DCCD incorporated by the yeast enzyme. It is proposed that DCCD reacts with a single carboxylic group present in a hydrophobic region of these proton-pumping ATPases and which could participate in proton binding and transport.  相似文献   

5.
Several amino acids which are conserved in cation-pumping ATPases with phosphorylated intermediate have been mutagenized in the yeast plasma membrane H+-ATPase. The mutant genes have been selectively expressed in a yeast strain where the wild-type ATPase is only expressed in galactose medium. A series of mutants with decreasing levels of activity demonstrates that the ATPase is rate-limiting for growth and that decreased ATPase activity correlates with decreased intracellular pH. Enzymatic and transport studies of mutant ATPases indicate that (a) Lys474 is the target for the inhibitor fluorescein 5'-isothiocyanate and this residue can be replaced by either arginine or histidine with partial retention of activity; (b) the sensitivity to inhibition by vanadate is affected by the mutations Thr231----Gly, Cys376----Leu, Lys379----Gln and Asp634----Asn; (c) the mutation Ser234----Ala causes uncoupling between ATP hydrolysis and proton transport and reduces the ATP content of the cells; (d) the mutation Asp730----Asn, which affects a polar residue conserved in hydrophobic stretches of H+-ATPases, abolishes ATPase activity and proton transport but not the formation of a phosphorylated intermediate.  相似文献   

6.
The clathrin-coated vesicle proton-translocating complex is composed of a maximum of eight major polypeptides. Of these potential subunits, only the 17-kDa component, which is a proton pore, has been defined functionally (Sun, S.Z., Xie, X. S., and Stone, D. K. (1987) J. Biol. Chem. 262, 14790-14794). ATPase-and proton-pumping activities of the 200-fold purified proton-translocating complex are supported by Mg2+, whereas Ca2+ will only activate ATP hydrolysis. Like Mg2+-activated ATPase activity, Ca2+-supported ATP hydrolysis is inhibited by N-ethylmaleimide, NO3-, and an inhibitory antibody and is stimulated by Cl- and phosphatidylserine. Thus, Ca2+ prevents coupling of ATPase activity to vectoral proton movement, and Ca2+-activated ATPase activity is a partial reaction useful for analyzing the subunit structure required for ATP hydrolysis. The 530-kDa holoenzyme was dissociated with 3 M urea and subcomplexes, and isolated subunits were partially resolved by glycerol gradient centrifugation. No combination of these components yielded Mg2+-activated ATPase or proton pumping. Ca2+-activated ATP hydrolysis was not catalyzed by a subcomplex containing the 70- and 58-kDa subunits but was restored by recombination of the 70-, 58-, 40-, and 33-kDa polypeptides, indicating that these are subunits of the clathrin-coated vesicle proton pump which are necessary for ATP hydrolysis.  相似文献   

7.
Several human neurological disorders have been associated with various mutations affecting mitochondrial enzymes involved in cellular ATP production. One of these mutations, T9176C in the mitochondrial DNA (mtDNA), changes a highly conserved leucine residue into proline at position 217 of the mitochondrially encoded Atp6p (or a) subunit of the F1FO-ATP synthase. The consequences of this mutation on the mitochondrial ATP synthase are still poorly defined. To gain insight into the primary pathogenic mechanisms induced by T9176C, we have investigated the consequences of this mutation on the ATP synthase of yeast where Atp6p is also encoded by the mtDNA. In vitro, yeast atp6-T9176C mitochondria showed a 30% decrease in the rate of ATP synthesis. When forcing the F1FO complex to work in the reverse mode, i.e. F1-catalyzed hydrolysis of ATP coupled to proton transport out of the mitochondrial matrix, the mutant showed a normal proton-pumping activity and this activity was fully sensitive to oligomycin, an inhibitor of the ATP synthase proton channel. However, under conditions of maximal ATP hydrolytic activity, using non-osmotically protected mitochondria, the mutant ATPase activity was less efficiently inhibited by oligomycin (60% inhibition versus 85% for the wild type control). Blue Native Polyacrylamide Gel Electrophoresis analyses revealed that atp6-T9176C yeast accumulated rather good levels of fully assembled ATP synthase complexes. However, a number of sub-complexes (F1, Atp9p-ring, unassembled α-F1 subunits) could be detected as well, presumably because of a decreased stability of Atp6p within the ATP synthase. Although the oxidative phosphorylation capacity was reduced in atp6-T9176C yeast, the number of ATP molecules synthesized per electron transferred to oxygen was similar compared with wild type yeast. It can therefore be inferred that the coupling efficiency within the ATP synthase was mostly unaffected and that the T9176C mutation did not increase the proton permeability of the mitochondrial inner membrane.  相似文献   

8.
Pichia stipitis efficiently converts glucose or xylose into ethanol but is inhibited by ethanol concentrations exceeding 30 g/L. In Saccharomyces cerevisiae, ethanol has been shown to alter the movement of protons into and out of the cell. In P. stipitis the passive entry of protons into either glucose- or xylose-grown cells is unaffected at physiological ethanol concentrations. In contrast, active proton extrusion is affected differentially by ethanol, depending on the carbon source catabolized. In fact, in glucose-grown cells, the H(+)-extrusion rate is reduced by low ethanol concentrations, whereas, in xylose-grown cells, the H(+)-extrusion rate is reduced only at non-physiological ethanol concentrations. Thus, the ethanol inhibitory effect on growth and ethanol production, in glucose-grown cells, is probably caused by a reduction in H(+)-extrusion. Comparison of the rates of H(+)-flux with the related in vitro H(+)-ATPase activity suggests a new mechanism for the regulation of the proton pumping plasma membrane ATPase (EC 3.6.1.3) of P. stipitis, by both glucose and ethanol. Glucose activates both the ATP hydrolysis and the proton-pumping activities of the H(+)-ATPase, whereas ethanol causes an uncoupling between the ATP hydrolysis and the proton-pumping activities. This uncoupling may well be the cause of ethanol induced growth inhibition of glucose grown P. stipitis cells.  相似文献   

9.
Resting state respiration of rat-liver mitochondria in the presence of oligomycin was rapidly blocked with cyanide and the dissipation of the membrane potential was followed with a tetraphenylphosphonium-sensitive electrode. From the rate of this dissipation and the electric capacitance of the mitochondrial membrane the energy stored in form of the membrane potential was calculated as about 7 microJ/mg protein. In the absence of oligomycin, dissipation of the membrane potential was slower, as it was partly compensated by proton ejection by mitochondrial ATPase hydrolyzing endogenous ATP. This allowed to calculate the total energy storage capacity of the proton-motive force. It amounted to the equivalence of 3.3 nmol ATP/mg protein or about 130 microJ/mg protein. The stoichiometry of proton-pumping ATPase utilizing endogenous ATP was estimated as three protons per molecule ATP.  相似文献   

10.
B. Marin  X. Gidrol  H. Chrestin  J. D''Auzac 《Biochimie》1986,68(12):1263-1277
Taken together, all the data reported recently in the literature suggest that tonoplast ATPase belongs to a new class of proton pumps. To date, the most studied system is the proton-pumping ATPase from the tonoplast of Hevea latex. Its main characteristics are presented. It resembles the mitochondrial ATPase in its specificity, its substrate affinity, and its sensitivity to different inhibitors. However, for some aspects, it resembles the plasma membrane system in its response to other inhibitors tested (quercetin for example). It differs from both ATPases in its sensitivity to nitrate as well as by its molecular structure, i.e. a complex exhibiting a least 4 or 5 polypeptides. These results favor the existence of a third class of proton pumps, intermediate between the F1F0-class and the E1E2-class.  相似文献   

11.
《BBA》2022,1863(5):148544
Proton-translocating FOF1 ATP synthase (F-ATPase) couples ATP synthesis or hydrolysis to transmembrane proton transport in bacteria, chloroplasts, and mitochondria. The primary function of the mitochondrial FOF1 is ATP synthesis driven by protonmotive force (pmf) generated by the respiratory chain. However, when pmf is low or absent (e.g. during anoxia), FOF1 consumes ATP and functions as a proton-pumping ATPase.Several regulatory mechanisms suppress the ATPase activity of FOF1 at low pmf. In yeast mitochondria they include special inhibitory proteins Inh1p and Stf1p, and non-competitive inhibition of ATP hydrolysis by MgADP (ADP-inhibition). Presumably, these mechanisms help the cell to preserve the ATP pool upon membrane de-energization. However, no direct evidence was presented to support this hypothesis so far.Here we report that a point mutation Q263L in subunit beta of Saccharomyces cerevisiae ATP synthase significantly attenuated ADP-inhibition of the enzyme without major effect on the rate of ATP production by mitochondria. The mutation also decreased the sensitivity of the enzyme ATPase activity to azide. Similar effects of the corresponding mutations were observed in earlier studies in bacterial enzymes. This observation indicates that the molecular mechanism of ADP-inhibition is probably the same in mitochondrial and in bacterial FOF1.The mutant yeast strain had lower growth rate and had a longer lag period preceding exponential growth phase when starved cells were transferred to fresh growth medium. However, upon the loss of mitochondrial DNA (ρ0) the βQ263L mutation effect was reversed: the βQ263L ρ0 mutant grew faster than the wild-type ρ0 yeast. The results suggest that ADP-inhibition might play a role in prevention of wasteful ATP hydrolysis in the mitochondrial matrix.  相似文献   

12.
The addition of glucose to yeast cells activates proton efflux mediated by the plasma membrane ATPase. Accordingly, the ATPase activity of purified plasma membranes is increased up to 10-fold. The activated ATPase has a more alkaline pH optimum, better affinity for ATP and greater sensitivity to vanadate than the non-activated enzyme. All these changes are reversed by washing the cells free of glucose. This suggests two states of the ATPase which are interconverted by a covalent modification. As glucose does not affect the phosphorylation of plasma membrane polypeptides, other type of covalent modification may be involved.  相似文献   

13.
The proton-ATPase of chromaffin granules was purified so as to maintain its proton-pumping activity when reconstituted into phospholipid vesicles. The purification procedure involved solubilization with polyoxyethylene 9 lauryl ether, hydroxylapatite column, precipitation by ammonium sulfate, and glycerol gradient centrifugation. The protease inhibitor mixture used in previous studies inhibited the proton-pumping activity of the enzyme; therefore, the protein was stabilized by pepstatin A and leupeptin. The enzyme was purified at least 50-fold with respect to both ATPase and proton-pumping activity. The ATP-dependent proton uptake activity of the reconstituted enzyme was absolutely dependent on the presence of Cl- or Br- outside the vesicles, whereas sulfate, acetate, formate, nitrate, and thiocyanate were inhibitory. Sulfate inhibition seems to be due to competition with Cl- on the anion-binding site outside the vesicles, whereas nitrate and thiocyanate inhibited only from the internal side. As with the inhibition by N-ethylmaleimide, the proton-pumping activity was much more sensitive to nitrate than the ATPase activity. About 20 mM nitrate were sufficient for 90% inhibition of the proton-pumping activity while 100 mM inhibited only 50% of the ATPase activity both in situ and in the reconstituted enzyme. The possible regulatory effect of anions on the ATP-dependent proton uptake in secretory granules is discussed.  相似文献   

14.
Ethanol, in concentrations that affect growth and fermentation rates (3 to 10% [vol/vol]), activated in vivo the plasma membrane ATPase of Saccharomyces cerevisiae. The maximal value for this activated enzyme in cells grown with 6 to 8% (vol/vol) ethanol was three times higher than the basal level (in cells grown in the absence of ethanol). The Km values for ATP, the pH profiles, and the sensitivities to orthovanadate of the activated and the basal plasma membrane ATPases were virtually identical. A near-equivalent activation was also observed when cells grown in the absence of ethanol were incubated for 15 min in the growth medium with ethanol. The activated state was preserved after the extraction from the cells of the membrane fraction, and cycloheximide appeared to prevent this in vivo activation. After ethanol removal, the rapid in vivo reversion of ATPase activation was observed. While inducing the in vivo activation of plasma membrane ATPase, concentrations of ethanol equal to and greater than 3% (vol/vol) also inhibited this enzyme in vitro. The possible role of the in vivo activation of the plasma membrane proton-pumping ATPase in the development of ethanol tolerance by this fermenting yeast was discussed.  相似文献   

15.
Ethanol, in concentrations that affect growth and fermentation rates (3 to 10% [vol/vol]), activated in vivo the plasma membrane ATPase of Saccharomyces cerevisiae. The maximal value for this activated enzyme in cells grown with 6 to 8% (vol/vol) ethanol was three times higher than the basal level (in cells grown in the absence of ethanol). The Km values for ATP, the pH profiles, and the sensitivities to orthovanadate of the activated and the basal plasma membrane ATPases were virtually identical. A near-equivalent activation was also observed when cells grown in the absence of ethanol were incubated for 15 min in the growth medium with ethanol. The activated state was preserved after the extraction from the cells of the membrane fraction, and cycloheximide appeared to prevent this in vivo activation. After ethanol removal, the rapid in vivo reversion of ATPase activation was observed. While inducing the in vivo activation of plasma membrane ATPase, concentrations of ethanol equal to and greater than 3% (vol/vol) also inhibited this enzyme in vitro. The possible role of the in vivo activation of the plasma membrane proton-pumping ATPase in the development of ethanol tolerance by this fermenting yeast was discussed.  相似文献   

16.
The vacuolar proton-pumping ATPase (V-ATPase) is responsible for the acidification of intracellular organelles and for the pH regulation of extracellular compartments. Because of the potential role of the latter process in olfaction, we examined the expression of V-ATPase in mouse olfactory epithelial (OE) cells. We report that V-ATPase is present in this epithelium, where we detected subunits ATP6V1A (the 70-kDa "A" subunit) and ATP6V1E1 (the ubiquitous 31-kDa "E" subunit isoform) in epithelial cells, nerve fiber cells, and Bowman's glands by immunocytochemistry. We also located both isoforms of the 56-kDa B subunit, ATP6V1B1 ("B1," typically expressed in epithelia specialized in regulated transepithelial proton transport) and ATP6V1B2 ("B2") in the OE. B1 localizes to the microvilli of the apical plasma membrane of sustentacular cells and to the lateral membrane in a subset of olfactory sensory cells, which also express carbonic anhydrase type IV, whereas B2 expression is stronger in the subapical domain of sustentacular cells. V-ATPase expression in mouse OE was further confirmed by immunoblotting. These findings suggest that V-ATPase may be involved in proton secretion in the OE and, as such, may be important for the pH homeostasis of the neuroepithelial mucous layer and/or for signal transduction in CO2 detection. proton secretion; vacuolar H+-ATPase; immunofluorescence; pH homeostasis; olfaction  相似文献   

17.
Cell volume regulation in Mycoplasma gallisepticum.   总被引:6,自引:5,他引:1       下载免费PDF全文
Mycoplasma gallisepticum cells incubated in 250 mM NaCl solutions in the absence of glucose showed a progressive fall in intracellular ATP concentration over a period of 2 to 3 h. When the ATP level fell below 40 microM the cell began to swell and become progressively permeable to [14C]inulin and leak intracellular protein and nucleotides. The addition of nondiffusable substances such as MgSO4 or disaccharides prevented swelling, suggesting that NaCl (and water) entry was due to Gibbs-Donnan forces. The addition of glucose after the initiation of cell swelling increased intracellular ATP, induced cell shrinkage, and prevented the release of intracellular components. The ATPase inhibitor dicyclohexylcarbodiimide, which collapsed the chemical and electrical components of the proton motive force, caused rapid cell swelling in the presence of glucose (and high intracellular ATP levels). Extracellular impermeable solutes such as MgSO4 and disaccharides prevented swelling of dicyclohexylcarbodiimide-treated cells incubated in NaCl. It was postulated that Na+ that diffused into the cell was extruded by an electrogenic Na+-H+ exchange (antiport) energized by the proton motive force established by the dicyclohexylcarbodiimide-sensitive H+-ATPase.  相似文献   

18.
Abstract Effects of various inhibitors on the intracellular accumulation of glycerol and inorganic ions in a salt-tolerant yeast, Zygosaccharomyces rouxii , were examined for several hours during NaCl-induced salt stress. Cycloheximide strongly inhibited the intracellular accumulation of glycerol during salt stress but chloramphenicol did not. Rapid activation of plasma-membrane ATPase was apparent within 5 min after the start of salt stress and after 1 h a second, slower activation occurred. ATP was maintained at a higher level during salt stress than that in its absence. Experiments with various other inhibitors demonstrated a close relationship between synthesis of glycerol, activation of plasma membrane ATPase and increases in levels of ATP. These results suggest that activation by salt stress of plasma-membrane ATPase may trigger the synthesis of glycerol for osmoregulation.  相似文献   

19.
The ATP synthases of eubacteria and eukaryotes possess a conserved tyrosine (beta 331) that is labeled by ATP analogs and is believed to be at the catalytic site. In this report, this tyrosine was replaced by Phe, Ser, Cys, Gly, and Ala in an attempt to determine its role in catalysis. Each of the beta 331 mutant strains assembled an ATP synthase. Membranes from the beta 331-Ser, -Cys, -Ala, or -Gly strains showed strongly attenuated ATP hydrolysis and ATP-driven proton-pumping activities. The beta 331-Phe membranes showed nearly normal ATPase and functional proton pumping. A new purification procedure yielding highly active unc+ F1 (ATPase rates greater than 1000 s-1) allowed rapid isolation of soluble F1-ATPases. Kinetic analyses of purified enzymes confirmed that the structural and functional properties of beta 331-Tyr can be substituted by Phe but not effectively by Ser, Cys, Ala, or Gly. Since all of the beta 331 mutant enzymes catalyzed measurable ATP hydrolysis, it is clear that beta 331-Tyr is not directly involved in the bond making-breaking steps of catalysis. The ability of the beta 331-Phe enzyme to rapidly bind and hydrolyze ATP, and the results with other beta 331 mutant enzymes, suggests that a residue with an aromatic character is required at this position.  相似文献   

20.
The synthesis of adenosine 5-triphosphate (ATP) (increase in phosphorylation potential) during the oxidation of reduced inorganic sulfur compounds was studied in the moderately thermophilic acidophileAcidithiobacillus caldus (strain KU) (formerly Thiohacillus caldus). The phosphorylation potential increased during the oxidation of all reduced inorganic sulfur compounds tested compared with resting cells. The generation of ATP in whole cells was inhibited by the F0F1 ATPase inhibitor oligomycin, electron transport chain inhibitors, valinomycin and potassium ions. There was no increase in the phosphorylation potential, nor synthesis of ATP. in the absence of electron transport. An apparent lack of substrate-level phosphorylation was indicated by the lack of adenosine 5-phosphosulfate reductase in tetrathionate-grown At. caldus. Studies were also performed on the synthesis of ATP by membrane vesicles of At. caldus when presented with an artificial proton gradient. Complete inhibition of ATP synthesis in these vesicles occurred when they were loaded with N,N-dicyclohexylcarbodiimide (DCCD), but not when they were loaded with oligomycin, vanadate or electron transport chain inhibitors. The data presented here suggest that during the oxidation of reduced inorganic sulfur compounds by At. caldus, all ATP is synthesized by oxidative phosphorylation via a membrane-bound F0F1 ATPase driven by a proton gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号