首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A direct method for quantification of non-transferrin-bound iron   总被引:2,自引:0,他引:2  
A direct method for quantification of non-transferrin-bound iron has been developed. This assay relies on the use of a large excess of a low affinity ligand (nitrilotriacetic acid, NTA) which removes and complexes all low molecular weight iron and iron nonspecifically bound to serum proteins. Iron bound to transferrin, ferritin, desferrioxamine, and its metabolites is unaffected. The Fe-NTA complex present in the serum ultrafiltrate is then quantified using an automated HPLC procedure where on-column derivatization with a high affinity iron chelator (3-hydroxy-1-propyl-2-methyl-pyridin-4-one) takes place. The iron complexes of desferrioxamine and its metabolites are unaffected by the above-derivatization procedure. With minor modifications, this method is equally applicable for the quantification of low molecular weight iron in other biological fluids.  相似文献   

2.
Release of non-protein bound iron plays an important role in the toxicity inflicted by chemotherapy in cancer patients. Since large variations have been described for different methods measuring non-transferrin bound iron (NTBI), we aimed to obtain more accurate values. After binding to the chelator nitrilotriacetic acid disodium salt (NTA) and ultrafiltration, the NTBI can be measured spectrophotometrically by the addition of thioglycolic acid (TGA) and baptophenanthroline disulfonic acid (BPT). Results demonstrated that NTBI values increased with NTA concentration. In samples incubated with 80 mM NTA, >5-fold higher NTBI values were found compared to using 10 mM NTA. Optimal concentration of NTA was established by additions of iron to serum with known latent iron-binding capacity (LIBC). Iron addition curves showed that NTBI could be measured starting from the LIBC of the serum with optimal yield after incubation with 4 mM NTA in 5 mM Tris-HCl pH 6.5, with 3 mM TGA and 6.2 mM BPT for the colour reaction. The results showed excellent correlation with 195 samples measured also by HPLC. For the spectrophotometric method, significantly higher NTBI values were measured in patient samples with maximal iron saturation compared to patients with lower iron saturation.  相似文献   

3.
An HPLC-based method capable of separating desferrioxamine (DFO) and its iron chelating metabolites from uv-absorbing species present in biological fluids has been developed. This method relies on the use of nitrilotriacetic acid (NTA) as the complexing agent in the mobile phase, instead of EDTA, previously used in HPLC methods. The use of NTA ensures that iron contamination present in buffers and bound to the column does not interfere with analysis. The disadvantages of using EDTA are discussed. The identity of the iron chelating metabolites of DFO present in the urine of patients with beta-thalassemia major has been established using FAB mass spectrometry. The metabolism of DFO, reported in this study, takes place almost exclusively at the N-terminal region of the molecule and is in many respects similar to the degradation of the amino acid lysine. In addition, a metabolite which corresponds to N-hydroxylation of the terminal amino group has been identified.  相似文献   

4.
Non-transferrin-bound iron (NTBI) appears in the circulation of patients with iron overload. Various methods to measure NTBI were comparatively assessed as part of an international interlaboratory study. Six laboratories participated in the study, using methods based on iron mobilization and detection with iron chelators or on reactivity with bleomycin. Serum samples of 12 patients with hereditary (n=11) and secondary (n=1) hemochromatosis were measured during a 3-day analysis using 4 determinations per sample per day, making a total of 144 measurements per laboratory. Bland-Altman plots for repeated measurements are presented. The methods differed widely in mean serum NTBI level (range 0.12-4.32mumol/L), between-sample variation (SD range 0.20-2.13mumol/L and CV range 49.3-391.3%), and within-sample variation (SD range 0.02-0.45mumol/L and CV range 4.4-193.2%). The results obtained with methods based on chelators correlated significantly (R(2) range 0.86-0.99). On the other hand, NTBI values obtained by the various methods related differently from those of serum transferrin saturation (TS) when expressed in terms of both regression coefficients and NTBI levels at TS of 50%. Recent studies underscore the clinical relevance of NTBI in the management of iron-overloaded patients. However, before measurement of NTBI can be introduced into clinical practice, there is a need for more reproducible protocols as well as information on which method best represents the pathophysiological phenomenon and is most pertinent for diagnostic and therapeutic purposes.  相似文献   

5.
Transfusional iron overload associated with thalassemia leads to the appearance of non-transferrin-bound iron (NTBI) in blood that is toxic and causes morbidity and mortality via tissue damage. Hence, a highly sensitive and accurate assay of NTBI, with broad clinical application in both diagnosis and validation of treatment regimens for iron overload, is important. An assay based on iron chelation by a high-affinity siderophore, azotobactin, has been developed. The steps consist of blocking of native apotransferrin iron binding sites, mobilization of NTBI, ultrafiltration of all serum proteins, and finally the addition of the probe, which has a chromophore that fluoresces at 490 nm. Binding of Fe3+ to azotobactin quenches the fluorescence in a concentration-dependent manner. Measured NTBI levels in 63 sera ranged from 0.07 to 3.24 μM (0.375 ± 0.028 μM [means ± SEM]). It correlated well with serum iron and percentage transferrin saturation but not with serum ferritin. Pearson’s correlation coefficients were found to be 0.6074 (< 0.0001) and 0.6102 (< 0.0001) for percentage transferrin saturation and total serum iron, respectively. The low values are due to the patients being under regular chelation therapy even prior to sampling, indicating that the method is sensitive to very low levels of NTBI, allowing a much lower detection limit than the available methods.  相似文献   

6.
On the Ca2+ dependence of non-transferrin-bound iron uptake in PC12 cells   总被引:4,自引:0,他引:4  
Non-transferrin-bound iron (NTBI) uptake has been reported to follow two pathways, Ca(2+)-dependent and Ca(2+)-independent (Wright, T. L., Brissot, P., Ma, W. L., and Weisiger, R. A. (1986) J. Biol. Chem. 261, 10909-10914; Sturrock, A., Alexander, J., Lamb, J., Craven, C. M., and Kaplan, J. (1990) J. Biol. Chem. 265, 3139-3145). Studies reporting the two pathways have ignored the weak interactions of Ca(2+) with the chelator nitrilotriacetate (NTA) and the reducing agent ascorbate. These studies used a constant ratio of total Fe(2+) to NTA with and without Ca(2+). We observed Ca(2+) activation of NTBI uptake in PC12 cells with the characteristics reported for other cells upon using 1 mm ascorbate and a constant ratio of total Fe(2+) to NTA with or without Ca(2+). However, Ca(2+) did not affect NTBI uptake in solutions without NTA. We then determined conditional stability constants for NTA binding to Ca(2+) and Fe(2+) by potentiometry under conditions of NTBI uptake experiments (pH, ionic strength, temperature, ascorbate, total Fe(2+), and total Ca(2+) concentrations). In solutions based on these constants and taking Ca(2+) chelation into account, Ca(2+) did not affect NTBI uptake over a range of free Fe(2+) concentrations. Thus, the Ca(2+) activation of NTBI uptake observed using the constant total Fe(2+) to NTA ratio was because of Ca(2+)-NTA chelation rather than an activation of the NTBI transporter itself. It is suggested that the previously reported Ca(2+) dependence of NTBI uptake be re-evaluated.  相似文献   

7.
Iron is an essential nutrient in several biological processes such as oxygen transport, DNA replication and erythropoiesis. Plasma iron normally circulates bound to transferrin. In iron overload disorders, however, iron concentrations exceed transferrin binding capacity and iron appears complexed with low molecular weight molecules, known as non-transferrin-bound iron (NTBI). NTBI is responsible for the toxicity associated with iron-overload pathologies but the mechanisms leading to NTBI uptake are not fully understood. Here we show for the first time that T lymphocytes are able to take up and accumulate NTBI in a manner that resembles that of hepatocytes. Moreover, we show that both hepatocytes and T lymphocytes take up the oligomeric Fe3Cit3 preferentially to other iron-citrate species, suggesting the existence of a selective NTBI carrier. These results provide a tool for the identification of the still elusive ferric-citrate cellular carrier and may also open a new pathway towards the design of more efficient iron chelators for the treatment of iron overload disorders.  相似文献   

8.
The nature of non-transferrin-bound iron in the plasma or serum of iron-overloaded hemochromatosis patients was studied by high performance liquid chromatography (HPLC) and high resolution nuclear magnetic resonance (NMR). 500-MHz proton Hahn spin-echo NMR spectra of plasma or serum, combined with the use of the iron chelator desferrioxamine, suggests complexation of iron ions with citrate and a possible involvement of acetate. Addition of FeCl3 to hemochromatosis samples broadened the NMR signals from citrate. HPLC analysis rigorously confirmed the presence of an iron-citrate complex in ultrafiltrates of plasma or serum studies with added FeCl3 or desferrioxamine supported this conclusion. It is proposed that non-transferrin-bound iron in the plasma of iron-overloaded patients exists largely as complexes with citrate and possibly also as ternary iron-citrate-acetate complexes. The presence of such complexes would account for the ability of non-transferrin-bound iron to be measurable by the bleomycin assay and for its rapid clearance from the circulation by the liver.  相似文献   

9.
An HPLC-based method for quantification of desferrioxamine (DFO) and its iron chelating metabolites in plasma has been developed. This assay overcomes stability problems associated with DFO by the addition of radioactive iron to convert unbound drug and metabolites to radio-iron-bound species. A dual detection system utilizing uv-vis absorption and radioactive (beta-particle) detector was used to quantify total and radio-iron-bound species. The use of octadecyl silanol solid phase extraction cartridges permits concentration of samples and allows accurate quantification of drug and metabolites down to 0.1 nmol/ml.  相似文献   

10.
Non-transferrin-bound iron (NTBI) was detected in serum samples from volunteers with normal iron stores or from patients with iron deficiency anaemia after oral application of pharmaceutical iron preparations. Following a 100 mg ferrous iron dosage, NTBI values up to 9 μM were found within the time period of 1–4 h after administration whereas transferrin saturation was clearly below 100%. Smaller iron dosages (10 and 30 mg) gave lower but still measurable NTBI values. The physiological relevance of this finding for patients under iron medication has to be elucidated.  相似文献   

11.
Several genes associated with hemochromatosis and primary iron overload have been identified. Mutations in the HFE gene have been detected in 60-100% of hemochromatosis patients of northern, central, and western European descent, although the frequencies of these mutations vary among racial and ethnic groups. Recently, a mutation in the gene encoding transferrin receptor-2 (exon 6, nucleotide 750 C --> G; Y250X) was detected by a PCR-restriction fragment length polymorphism (RFLP) method in Sicilians with hemochromatosis. We describe a modification of the original assay in which the sequence-specific priming PCR assay does not require the use of restriction endonuclease. The modified assay is robust and cost-efficient, and may be more useful for large-scale population studies because it can be performed rapidly on DNA extracted from buccal swabs.  相似文献   

12.
In plasma, iron is normally bound to transferrin, the principal protein in blood responsible for binding and transporting iron throughout the body. However, in conditions of iron overload when the iron-binding capacity of transferrin is exceeded, non–transferrin-bound iron (NTBI) appears in plasma. NTBI is taken up by hepatocytes and other parenchymal cells via NTBI transporters and can cause cellular damage by promoting the generation of reactive oxygen species. However, how NTBI affects endothelial cells, the most proximal cell type exposed to circulating NTBI, has not been explored. We modeled in vitro the effects of systemic iron overload on endothelial cells by treating primary human umbilical vein endothelial cells (HUVECs) with NTBI (ferric ammonium citrate [FAC]). We showed by RNA-Seq that iron loading alters lipid homeostasis in HUVECs by inducing sterol regulatory element-binding protein 2–mediated cholesterol biosynthesis. We also determined that FAC increased the susceptibility of HUVECs to apoptosis induced by tumor necrosis factor-α (TNFα). Moreover, we showed that cholesterol biosynthesis contributes to iron-potentiated apoptosis. Treating HUVECs with a cholesterol chelator hydroxypropyl-β-cyclodextrin demonstrated that depletion of cholesterol was sufficient to rescue HUVECs from TNFα-induced apoptosis, even in the presence of FAC. Finally, we showed that FAC or cholesterol treatment modulated the TNFα pathway by inducing novel proteolytic processing of TNFR1 to a short isoform that localizes to lipid rafts. Our study raises the possibility that iron-mediated toxicity in human iron overload disorders is at least in part dependent on alterations in cholesterol metabolism in endothelial cells, increasing their susceptibility to apoptosis.  相似文献   

13.
Nontransferrin-bound serum iron in thalassemia and sickle cell patients   总被引:1,自引:0,他引:1  
Nontransferrin-bound iron (NTBI) was separated from transferrin bound iron (TBI) by DEAE-Sephadex-CDS filtration. TBI is eluted with Tris-NaCl buffer, NTBI that is retained on the column is eluted with citric acid. NTBI was identified in serum from thalassemia and sickle cell patients. Normal serum contained less than 6% NTBI as compared with 15-18% in patient's sera. NTBI levels were decreased significantly after 8 hr chelation with deferoxamine (DFO).  相似文献   

14.
The transferrin receptor (TfR) interacts with two proteins important for iron metabolism, transferrin (Tf) and HFE, the protein mutated in hereditary hemochromatosis. A second receptor for Tf, TfR2, was recently identified and found to be functional for iron uptake in transfected cells (Kawabata, H., Germain, R. S., Vuong, P. T., Nakamaki, T., Said, J. W., and Koeffler, H. P. (2000) J. Biol. Chem. 275, 16618-16625). TfR2 has a pattern of expression and regulation that is distinct from TfR, and mutations in TfR2 have been recognized as the cause of a non-HFE linked form of hemochromatosis (Camaschella, C., Roetto, A., Cali, A., De Gobbi, M., Garozzo, G., Carella, M., Majorano, N., Totaro, A., and Gasparini, P. (2000) Nat. Genet. 25, 14-15). To investigate the relationship between TfR, TfR2, Tf, and HFE, we performed a series of binding experiments using soluble forms of these proteins. We find no detectable binding between TfR2 and HFE by co-immunoprecipitation or using a surface plasmon resonance-based assay. The affinity of TfR2 for iron-loaded Tf was determined to be 27 nm, 25-fold lower than the affinity of TfR for Tf. These results imply that HFE regulates Tf-mediated iron uptake only from the classical TfR and that TfR2 does not compete for HFE binding in cells expressing both forms of TfR.  相似文献   

15.
Iron metabolism in K562 erythroleukemic cells   总被引:7,自引:0,他引:7  
Iron delivery to K562 cells is enhanced by desferrioxamine through induction of transferrin receptors. Experiments were performed to further characterize this event with respect to iron metabolism and heme synthesis. In control cells, up to 85% of the iron taken up from iron-transferrin was incorporated into ferritin, 7% into heme, and the remainder into compartments not yet identified. In cells grown with desferrioxamine, net accumulation of intracellular desferrioxamine (14-fold) was observed and iron incorporation into ferritin and heme was inhibited by 86% and 75%, respectively. In contrast, complete inhibition of heme synthesis in cells grown with succinylacetone had no effect on transferrin binding or iron uptake. Exogenous hemin (30 microM) inhibited transferrin binding and iron uptake by 70% and heme synthesis by 90%. These effects were already evident after 2 h. Thus, although heme production could be reduced by desferrioxamine, succinylacetone, and hemin, cell iron uptake was enhanced only by the intracellular iron chelator. The effects of exogenous heme are probably unphysiologic and the greater inhibition of iron flow into heme can be explained by effects on early steps of heme synthesis. We conclude that in this cell model a chelatable intracellular iron pool rather than heme synthesis mediates regulation of iron uptake.  相似文献   

16.
Non-transferrin-bound iron (NTBI) is implicated in lipid peroxidation but the relation with oxidative modification of low-density lipoprotein (LDL) is not known. We assessed variables reflecting in vitro and in vivo LDL oxidation in two age- and sex-matched groups (n=23) of hereditary hemochromatosis heterozygotes (C282Y), characterized by a clear difference in mean serum NTBI (1.55+/-0.57 micromol/L vs 3.70+/-0.96 micromol/L). Plasma level of oxidized LDL (absolute and relative to plasma apolipoprotein B), and IgG and IgM antibodies to oxidized LDL, markers of in vivo LDL oxidation, did not differ between the groups with low and high serum NTBI. Mean lag-phase of in vitro LDL oxidation was also not significantly different between both study groups. Conclusion: these findings do not support the hypothesis that NTBI promotes oxidative modification of plasma LDL.  相似文献   

17.
Desferrioxamine B is widely used as therapeutic agent for removal of excess body iron and, more recently, for removal of aluminium. A HPLC-based method for direct sensitive and reliable determination of ferrioxamine, desferrioxamine, aluminoxamine and related metabolites has been developed for use in pharmacokinetic studies. The method consists of complete separation of the analytes by an optimized mobile phase avoiding conversion of desferrioxamine to ferrioxamine by the analytical system and overcoming problems due to peak tailing properties of desferrioxamine. A post-column derivatization reaction with colourless fluoro-complexed iron converts all iron free species to ferrioxamine and allows quantification at 430 nm avoiding interference of UV-absorbing coelutes. This reaction might be of interest for other analytical procedures concerning iron chelators. The influence of the post-column reaction system on the column plate number is characterized. As the reaction rate of desferrioxamine and aluminoxamine with iron(III) is of second-order kinetics, a quadratic calibration function is observed, resulting from a compromise between residence time and peak broadening. A solid-phase extraction procedure is presented for extraction of the analytes from plasma. Limits of detection (S/N ratio of 3) were determined as 1.95 ng for ferrioxamine, 3.9 ng for aluminoxamine and 15.7 ng for desferrioxamine, expressed as on-column load. A new iron-free metabolite was identified with fast atom bombardment-mass spectrometry as N-hydroxylated desferrioxamine.  相似文献   

18.
The advent of the genetics era has profoundly changed the way we look at iron related diseases, particularly hemochromatosis. New discoveries have challenged historical concepts about the disease, such as its monogenic nature, intestinal origin or complete phenotypic penetrance. This review presents a new concept of hemochromatosis which stems from the idea that, beyond their genetic diversities, all known hemochromatoses have in common the same metabolic abnormality: the genetically determined failure to prevent unneeded iron from entering the circulatory pool. Inappropriate levels of hepcidin, the iron hormone, appear now as the central pathogenic event in all forms of hemochromatosis: depending on the protein involved, and its effect on hepatic production of hepcidin, the phenotype varies, ranging from massive early-onset iron loading with severe organ disease (e.g., associated with homozygous mutations of hemojuvelin or hepcidin itself) to the milder late-onset phenotype characterizing the classic and highly prevalent HFE-related form or the rare transferrin receptor 2-related form. In vitro and in vivo studies will be needed to dissect the consequences of each hereditary hemochromatosis allele and increase our understanding of the precise contribution of each gene to the hereditary hemochromatosis phenotype.  相似文献   

19.
Despite its importance in iron-overload diseases, little is known about the composition of plasma non-transferrin-bound iron (NTBI). Using 30-kDa ultrafiltration, plasma from thalassemic patients consisted of both filterable and non-filterable NTBI, the filterable fraction representing less than 10% NTBI. Low filterability could result from protein binding or NTBI species exceeding 30 kDa. The properties of iron citrate and its interaction with albumin were therefore investigated, as these represent likely NTBI species. Iron permeated 5- or 12-kDa ultrafiltration units completely when complexes were freshly prepared and citrate exceeded iron by tenfold, whereas with 30-kDa ultrafiltration units, permeation approached 100% at all molar ratios. A g = 4.3 electron paramagnetic resonance signal, characteristic of mononuclear iron, was detectable only with iron-to-citrate ratios above 1:100. The ability of both desferrioxamine and 1,2-dimethyl-3-hydroxypyridin-4-one to chelate iron in iron citrate complexes also increased with increasing ratios of citrate to iron. Incremental molar excesses of citrate thus favour the progressive appearance of chelatable lower molecular weight iron oligomers, dimers and ultimately monomers. Filtration of iron citrate in the presence of albumin showed substantial binding to albumin across a wide range of iron-to-citrate ratios and also increased accessibility of iron to chelators, reflecting a shift towards smaller oligomeric species. However, in vitro experiments using immunodepletion or absorption of albumin to Cibacron blue–Sepharose indicate that iron is only loosely bound in iron citrate–albumin complexes and that NTBI is unlikely to be albumin-bound to any significant extent in thalassemic sera.  相似文献   

20.
We have examined the mechanism by which hemin regulates the expression of the human transferrin receptor. Previous work led to the suggestion that the regulatory signal is provided by heme (Ward J. H., Jordan, I., Kushner, J. P., and Kaplan, J. (1984) J. Biol. Chem. 259, 13235-13240). We demonstrated that hemin regulates the expression of the receptor via alterations in the rate of receptor biosynthesis. However, this effect can be completely abolished by addition of desferrioxamine, an intracellular iron chelator. Competition curves demonstrate that desferrioxamine and hemin affect the same intracellular iron pool. Since the chelator cannot remove iron from heme, we propose that hemin acts simply by delivering iron to a chelatable iron pool and that levels of chelatable iron provide the regulatory signal for expression of the transferrin receptor gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号