首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This investigation determined whether ingestion of a tolerable amount of medium-chain triglycerides (MCT; approximately 25 g) reduces the rate of muscle glycogen use during high-intensity exercise. On two occasions, seven well-trained men cycled for 30 min at 84% maximal O(2) uptake. Exactly 1 h before exercise, they ingested either 1) carbohydrate (CHO; 0.72 g sucrose/kg) or 2) MCT+CHO [0.36 g tricaprin (C10:0)/kg plus 0.72 g sucrose/kg]. The change in glycogen concentration was measured in biopsies taken from the vastus lateralis before and after exercise. Additionally, glycogen oxidation was calculated as the difference between total carbohydrate oxidation and the rate of glucose disappearance from plasma (R(d) glucose), as measured by stable isotope dilution techniques. The change in muscle glycogen concentration was not different during MCT+CHO and CHO (42.0 +/- 4.6 vs. 38.8 +/- 4.0 micromol glucosyl units/g wet wt). Furthermore, calculated glycogen oxidation was also similar (331 +/- 18 vs. 329 +/- 15 micromol. kg(-1). min(-1)). The coingestion of MCT+CHO did increase (P < 0.05) R(d) glucose at rest compared with CHO (26.9 +/- 1.5 vs. 20.7 +/- 0. 7 micromol.kg(-1). min(-1)), yet during exercise R(d) glucose was not different during the two trials. Therefore, the addition of a small amount of MCT to a preexercise CHO meal did not reduce muscle glycogen oxidation during high-intensity exercise, but it did increase glucose uptake at rest.  相似文献   

2.
Although medium chain triglyceride (MCT) is less calorically dense than long chain triglyceride (LCT), it produces a greater thermic effect following ingestion. We hypothesized that the previously observed high rate of thermogenesis produced by MCT overfeeding was due to hepatic de novo synthesis of long chain fatty acids (LCFA) from the excess medium chain fatty acids (MCFA). To study this, we compared the effects of overfeeding MCT- and LCT-containing diets on blood lipid profiles. Ten in-patient, nonobese males were overfed (150% of estimated energy requirements) two formula diets for 6 days each, in a randomized crossover design. Diets differed only in the composition of the fat and contained either 40% of energy as MCT or LCT (soybean oil). The major differences between diets in the resulting pattern of blood lipids were: 1) a reduction in fasting serum total cholesterol concentrations with the LCT, but not the MCT diet; and 2) a threefold increase in fasting serum triglyceride concentrations with MCT, but not LCT, diet. Moreover, 10% of the fasting triglyceride fatty acids were medium chain and 40% were 16:0 with the MCT diet. This compared to 1% and 20% for medium chain and 16:0, respectively, with the LCT diet. In addition, there were increases in 16:1, 18:0, and 18:1 in the triglycerides during MCT feeding. The changes in fatty acids in triglycerides with MCT feeding are consistent with the hypothesis that excess dietary MCT cause a significant increase in the hepatic synthesis of these fatty acids from MCFA through de novo synthesis and/or chain elongation and desaturation. These processes could account for the higher rate of postprandial thermogenesis with MCT as compared to LCT.  相似文献   

3.
The aim of this work was to find by which mechanisms an increased availability of plasma free fatty acids (FFA) reduced carbohydrate utilization during exercise. Rats were fed high-protein medium-chain triglycerides (MCT), high-protein long-chain triglycerides (LCT), carbohydrate (CHO) or high-protein low-fat (HP) diets for 5 weeks, and liver and muscle glycogen, gluconeogenesis and FFA oxidation were studied in rested and trained runner rats. In the rested state the hepatic glycogen store was decreased by fat and protein feeding, whereas soleus muscle glycogen concentration was only affected by high-protein diets. The percentage decrease in liver and muscle glycogen stores, after running, was similar in fat-fed, high-protein and CHO-fed rats. The fact that plasma glucose did not drastically change during exercise could be explained by a stimulation of hepatic gluconeogenesis: the activity of phosphoenolpyruvate carboxykinase (PEPCK) and liver phosphoenolpyruvate (PEP) concentration increased as well as cyclic adenosine monophosphate (AMPc) while liver fructose 2,6-bisphosphate decreased and plasma FFA rose. In contrast, the stimulation of gluconeogenesis in rested HP-, MCT- and LCT-fed rats appears to be independent of cyclic AMP.  相似文献   

4.
Obesity, liver steatosis and type 2 diabetes are major diseases partly imputed to energy-dense diets rich in long chain triglycerides (LCT). The search for bioactive nutrients that help to overcome metabolic diseases is a growing field. In this regard, medium chain triglycerides (MCT) were shown to promote lipid catabolism and to stimulate brown adipose tissue thermogenesis. The objective of our study was to evaluate if the replacement of LCT by MCT in high-fat diets could prevent and/or reduce metabolic disorders. For this purpose, two cohorts of C57BL/6 mice were fed during 10 weeks with three isocaloric high-fat diets with variable MCT content. Cohort A was composed of lean mice while cohort B was composed of obese, insulin resistant mice. In cohort A, replacement of LCT by MCT preserved metabolic health, in part by triggering hepatic thermogenesis. We further found that medium chain fatty acids promote thermogenesis markers within cultured hepatocytes in a FFAR1/GPR40-dependent manner. In cohort B, high-fat diets enriched in MCT promoted body fat depletion and caused metabolic health improvement, together with the induction of thermogenesis markers in the liver as well as in subcutaneous white adipose tissue. Our study supports that replacement of LCT by MCT in high-fat diets improves the metabolic features associated with obesity.  相似文献   

5.
This study compared the serum lipid concentrations after a single dose of medium-chain triglycerides (MCT) or long-chain triglycerides (LCT) between individuals grouped according to the body mass index (BMI). Twenty-five males participated as volunteers, the test diet containing 10 g of MCT or LCT. Blood samples were collected up to 6 h after the intake of a test diets. The LCT diet resulted in significantly greater increases in areas under the curves (AUCs) for serum and chylomicron triglyceride in the BMI > or = 23 kg/m2 group than those in the BMI < 23 kg/m2 group. The magnitude of response after intake of the MCT diet by the BMI > or = 23 kg/m2 group was significantly lower than that after the LCT diet. These results suggest that, in subjects with BMI > or = 23 kg/m2, the intake of MCT is preferable to that of LCT for maintaining postprandial triglyceride at a low concentration.  相似文献   

6.
Skeletal muscle, liver and heart glycogen variations, induced by swimming in thermal water (at 35 degrees C) as a model of physical exercise for clinical use, were studied. Muscle and liver glycogen moderately decreases after a 30-min period of swimming and comes near to depletion after 60 min. Heart glycogen decreases only slightly after 60 min. Blood glucose and plasma insulin decrease only after 60 min of swimming. A 30-min swim in thermal water, cooled to 25 degrees C, depletes muscle and liver glycogen and slightly decreases heart glycogen. Under these conditions, plasma insulin decreases and hypoglycemia occurs. The results seem to indicate some advantages of swimming in hot thermal water in order to prevent glycogen store depletion as the physiological prerequisite for a physical exercise of clinical interest to obtain therapeutical benefits, avoiding premature fatigue and exhaustion.  相似文献   

7.
Medium-chain triglycerides (MCT) are known to be rapidly digested and oxidized. Their potential value as a source of dietary energy during exercise was compared with that of maltodextrins (MD). Twelve subjects exercised for 1 h on a bicycle ergometer (60% VO2 max), 1 h after the test meal (1MJ). The metabolism of MCT was followed using 1-13C-octanoate (Oc) as tracer and U-13C-glucose (G) was added to the 13C-naturally enriched MD. After MCT ingestion no insulin peak was observed with some accumulation of ketone bodies (KB), blood levels not exceeding 1 mM. Total losses of KB during exercise in urine, sweat and as breath acetone were small (less than 0.2 mmol X h-1). Hence, the influence of KB loss and storage on gas exchange data was negligible. The partition of fat and carbohydrate utilization during exercise as obtained by indirect calorimetry was practically the same after the MCT and the CHO meals. Oxidation over the 2-h period was 30% of dose for Oc and 45% for G. Glycogen decrements in the Vastus lateralis muscle were equal. It appears that with normal carbohydrate stores, a single meal of MCT or CHO did not alter the contribution of carbohydrates during 1 h of high submaximal exercise. The moderate ketonemia after MCT, despite substantial oxidation of this fat, led to no difference in muscle glycogen sparing between the diets.  相似文献   

8.
This investigation studied the effect of an oral glucose feeding on glycogen sparing during exercise in non-glycogen-depleted and glycogen-depleted endurance-trained rats. The non-glycogen-depleted rats received via a stomach tube 2 ml of a 20% glucose solution labeled with [U-14C]glucose just prior to exercise (1 h at 25 m/min). Another group of rats ran for 40 min at higher intensity to deplete glycogen stores, after which they received the same glucose feeding and continued running for 1 h at 25 m/min. The initial 40-min run depleted glycogen in heart, skeletal muscle, and liver. In the non-glycogen-depleted rats the glucose feeding spared glycogen in the liver, primarily from the oxidation of blood-borne glucose in muscle. In the glycogen-depleted rats, muscle glycogen was repleted after the feeding, but sources other than the administered glucose also contributed to glycogen synthesis. The results suggest that glycogen depletion rather than the glucose feeding per se stimulates glycogen resynthesis in muscle during exercise in endurance-trained rats.  相似文献   

9.
Metabolically healthy skeletal muscle possesses the ability to switch easily between glucose and fat oxidation in response to homeostatic signals. In type 2 diabetes mellitus and obesity, the skeletal muscle shows a great reduction in this metabolic flexibility. A substrate like dodecanedioic acid (C-12), able to increase skeletal muscle glycogen stores via succinyl-CoA formation, might both postpone the fatigue and increase fatty acid utilization, since it does not affect insulin secretion. In healthy volunteers and in type 2 diabetic subjects, the effect of an oral C-12 load was compared with a glucose or water load during prolonged, moderate-intensity, physical exercise. C-12 metabolism was analyzed by a mathematical model. After C-12, diabetics were able to complete the 2 h of exercise. Nonesterified fatty acids increased both during and after the exercise in the C-12 session. C-12 oxidation provided 14% of total energy expenditure, and the sum of C-12 plus lipids oxidized after the C-12 meal was significantly greater than lipids oxidized after the glucose meal (P < 0.025). The fraction of C-12 that entered the central compartment was 47% of that ingested. During the first phase of the exercise ( approximately 60 min), the mean C-12 clearance from the central compartment toward tissues was 2.57 and 1.30 l/min during the second phase of the exercise. In conclusion, C-12 seems to be a suitable energy substrate during exercise, since it reduces muscle fatigue, is rapidly oxidized, and does not stimulate insulin secretion, which implies that lipolysis is not inhibited as reported after glucose ingestion.  相似文献   

10.
Since it has been shown that stimulation of pancreatic enzyme secretion by triglycerides is dependent on the chain length of the fatty acids, we have studied whether the secretion of pancreatic polypeptide (PP) in response to triglycerides is also related to the chain length of the fatty acids. Therefore, the effect of equimolar amounts (60 mmol) of medium-chain triglycerides (MCT) and long-chain triglycerides (LCT) on plasma PP was studied in 6 normal subjects. In the control study the subjects ingested 60 ml of 0.15 mol/l saline. Ingestion of LCT resulted in significant increases in plasma PP from 33 +/- 7 to 55 +/- 7 pmol/l (P less than 0.01), whereas both MCT and saline did not significantly increase plasma PP concentrations. Similarly, the integrated plasma PP secretion after LCT (1022 +/- 392 pmol/l per 90 min) was significantly greater than that after MCT (-690 +/- 358 pmol/l per 90 min; P less than 0.001) and that after saline (-462 +/- 205 pmol/l per 90 min; P less than 0.01). It is concluded that the secretion of PP in response to triglycerides is dependent on the chain length of the fatty acids.  相似文献   

11.
Using the forearm technique, muscular ketone body metabolism was investigated in 12 healthy volunteers during an i.v. infusion of lipid emulsions containing long chain triglycerides (LCT) or a mixture of medium- and long chain triglycerides (MCT/LCT). During the basal period, arterial concentrations and muscular extraction of beta-hydroxybutyrate and acetoacetate were linearly correlated as expected. This relationship was abolished during the infusion of both lipid emulsions. In addition, fractional extraction rates of ketone bodies were reduced. These changes were most probably mediated by elevated levels of free fatty acids and triglycerides as well.  相似文献   

12.
We studied the effects of ingesting either a snack food (S) (260 kcal) or placebo (P) 30 min before intermittent cycle exercise at 70% maximal O2 consumption on endurance performance and muscle glycogen depletion in eight healthy human males. Immediately before exercise there were significantly greater increases in plasma glucose (PG) (S +28 +/- 9.7; P +0.1 +/- 0.8 mg/dl) and insulin (S +219 +/- 61.5; P -7 +/- 5.5 pmol/l) (P less than 0.05) following S feeding compared with P. These differences were no longer present by the end of the first exercise period. There were no differences in endurance times (S 52 +/- 6.4; P 48 +/- 5.6 min) or in the extent of muscle glycogen depletion following exercise (S 56 +/- 14.7; P 50 +/- 15.5 micrograms/mg protein) between the two groups. PG was maintained at base-line (prefeeding) concentrations following S, whereas there was a tendency for PG to steadily decrease after P. Total grams of carbohydrate oxidized during exercise did not differ between the two groups (S 120; P 118 g). These results demonstrate that the ingestion of a mixed-macronutrient snack 30 min before exercise does not impair endurance performance nor increase the extent of muscle glycogen depletion during high-intensity cycle exercise in untrained adult male subjects.  相似文献   

13.
The activities of glucose 6-phosphate dehydrogenase (EC 1.1.1.49), malic enzyme (EC 1.1.1.40), ATP-citrate lyase (EC 4.1.3.8), acetyl-CoA carboxylase (EC 6.4.1.2) and fatty acid synthetase were lower (-25 to -60%) in liver of rats fed during 45 days with a moderate long-chain triglycerides (LCT) content diet (32% of metabolizable energy, ME), than in control rats fed with a low fat diet (LCT, 10% of ME). However, the fall in malic enzyme activity was not significant. In contrast, these activities were higher (+40 to +160%) in rats fed with a diet with a moderate medium-chain triglycerides (MCT) content (32% of ME), than in control rats. Nevertheless, the increase in activity of malic enzyme and ATP-citrate lyase was more important. Contrary to LCTs, MCTs had no inhibitory effect on the activity of enzymes involved in hepatic lipogenesis.  相似文献   

14.
For the working muscle there are a number of fuels available for oxidative metabolism, including glycogen, glucose, and nonesterified fatty acids. Nonesterified fatty acids originate from lipolysis in white adipose tissue, hydrolysis of VLDL triglycerides, or hydrolysis of intramyocellular triglyceride stores. A key enzyme in the mobilization of fatty acids from intracellular lipid stores is hormone-sensitive lipase (HSL). The aim of the present study was to investigate the metabolic response of HSL-null mice challenged with exercise or fasting and to examine whether other lipases are able to fully compensate for the lack of HSL. The results showed that HSL-null mice have reduced capacity to perform aerobic exercise. The liver glycogen stores were more rapidly depleted in HSL-null mice during treadmill exercise, and HSL-null mice had reduced plasma concentrations of both glycerol and nonesterified fatty acids after exercise and fasting, respectively. The data support the hypothesis that in the absence of HSL, mice are not able to respond to an exercise challenge with increased mobilization of the lipid stores. Consequently, the impact of the lipid-sparing effect on liver glycogen is reduced in the HSL-null mice, resulting in faster depletion of this energy source, contributing to the decreased endurance during submaximal exercise.  相似文献   

15.
The effects of acute alpha 1-adrenoceptor blockade with prazosin, beta 1-adrenoceptor blockade with atenolol, and nonselective beta-adrenoceptor blockade with propranolol were compared in a placebo-controlled crossover study of the hemodynamic and metabolic responses to acute exercise 2 h after prolonged prior exercise to induce skeletal muscle glycogen depletion, enhancing the dependence on hepatic glucose output and circulating free fatty acids (FFA). Plasma catecholamines were higher during exercise after, as opposed to before, glycogen depletion and were elevated further by all three drugs. Propranolol failed to produce a significant reduction in systolic blood pressure and elevated diastolic blood pressure. Atenolol reduced systolic blood pressure and did not change diastolic blood pressure. Both beta-blockers reduced FFA levels, but only propranolol lowered plasma glucose relative to placebo during exercise after glycogen depletion. In contrast, prazosin reduced systolic and diastolic blood pressures and resulted in elevated FFA and glucose levels. The results indicate important differences in the hemodynamic effects of beta 1-selective vs. nonselective beta-blockade during exercise after skeletal muscle glycogen depletion. Furthermore they confirm the importance of beta 2-mediated hepatic glucose production in maintaining plasma glucose levels during exercise. Acute alpha 1-blockade with prazosin induces reflex elevation of catecholamines, which in the absence of blockade of hepatic beta 2-receptors produces elevation of plasma glucose. The results suggest there is little role for alpha 1-mediated hepatic glucose production during exercise in humans.  相似文献   

16.
FAs are mobilized from triglyceride (TG) stores during exercise to supply the working muscle with energy. Mice deficient for adipose triglyceride lipase (ATGL-ko) exhibit defective lipolysis and accumulate TG in adipose tissue and muscle, suggesting that ATGL deficiency affects energy availability and substrate utilization in working muscle. In this study, we investigated the effect of moderate treadmill exercise on blood energy metabolites and liver glycogen stores in mice lacking ATGL. Because ATGL-ko mice exhibit massive accumulation of TG in the heart and cardiomyopathy, we also investigated a mouse model lacking ATGL in all tissues except cardiac muscle (ATGL-ko/CM). In contrast to ATGL-ko mice, these mice did not accumulate TG in the heart and had normal life expectancy. Exercise experiments revealed that ATGL-ko and ATGL-ko/CM mice are unable to increase circulating FA levels during exercise. The reduced availability of FA for energy conversion led to rapid depletion of liver glycogen stores and hypoglycemia. Together, our studies suggest that ATGL-ko mice cannot adjust circulating FA levels to the increased energy requirements of the working muscle, resulting in an increased use of carbohydrates for energy conversion. Thus, ATGL activity is required for proper energy supply of the skeletal muscle during exercise.  相似文献   

17.
To test the hypothesis that physical inactivity impairs the exercise-induced modulation of pyruvate dehydrogenase (PDH), six healthy normally physically active male subjects completed 7 days of bed rest. Before and immediately after the bed rest, the subjects completed an oral glucose tolerance test (OGTT) and a one-legged knee extensor exercise bout [45 min at 60% maximal load (W(max))] with muscle biopsies obtained from vastus lateralis before, immediately after exercise, and at 3 h of recovery. Blood samples were taken from the femoral vein and artery before and after 40 min of exercise. Glucose intake elicited a larger (P ≤ 0.05) insulin response after bed rest than before, indicating glucose intolerance. There were no differences in lactate release/uptake across the exercising muscle before and after bed rest, but glucose uptake after 40 min of exercise was larger (P ≤ 0.05) before bed rest than after. Muscle glycogen content tended to be higher (0.05< P ≤ 0.10) after bed rest than before, but muscle glycogen breakdown in response to exercise was similar before and after bed rest. PDH-E1α protein content did not change in response to bed rest or in response to the exercise intervention. Exercise increased (P ≤ 0.05) the activity of PDH in the active form (PDHa) and induced (P ≤ 0.05) dephosphorylation of PDH-E1α on Ser2?3, Ser2?? and Ser3??, with no difference before and after bed rest. In conclusion, although 7 days of bed rest induced whole body glucose intolerance, exercise-induced PDH regulation in skeletal muscle was not changed. This suggests that exercise-induced PDH regulation in skeletal muscle is maintained in glucose-intolerant (e.g., insulin resistant) individuals.  相似文献   

18.
Carbohydrates (CHO) can play an important thermogenic role during shivering, but the effect of their availability on the use of other oxidative fuels is unclear. Using indirect calorimetry and tracer methods ([U-13C]glucose ingestion), we have determined the specific contributions of plasma glucose, muscle glycogen, proteins, and lipids to total heat production (Hprod) in men exposed to cold for 2-h (liquid-conditioned suit perfused with 10 degrees C water). Measurements were made after low-CHO diet and exercise (Lo) and high-CHO diet without exercise (Hi). The size of CHO reserves had no effect on Hprod but a major impact on fuel selection before and during shivering. In the cold, a complete shift from lipid oxidation for Lo (53, 28, and 19% Hprod for lipids, CHO, and proteins, respectively) to CHO-based metabolism for Hi (23, 65, and 12% Hprod for lipids, CHO, and proteins, respectively) was observed. Plasma glucose oxidation remains a minor fuel under all conditions (<13% Hprod), falling to 7% Hprod for Lo. Therefore, adjusting plasma glucose oxidation to compensate for changes in muscle glycogen oxidation is not a strategy used for maintaining heat production. Instead, proteins and lipids share responsibility for this compensation. We conclude that humans can show remarkable flexibility in oxidative fuel selection to ensure that heat production is not compromised during sustained cold exposure.  相似文献   

19.
Effect of carbohydrate ingestion on exercise metabolism   总被引:2,自引:0,他引:2  
Five male cyclists were studied during 2 h of cycle ergometer exercise (70% VO2 max) on two occasions to examine the effect of carbohydrate ingestion on muscle glycogen utilization. In the experimental trial (CHO) subjects ingested 250 ml of a glucose polymer solution containing 30 g of carbohydrate at 0, 30, 60, and 90 min of exercise; in the control trial (CON) they received an equal volume of a sweet placebo. No differences between trials were seen in O2 uptake or heart rate during exercise. Venous blood glucose was similar before exercise in both trials, but, on average, was higher during exercise in CHO [5.2 +/- 0.2 (SE) mmol/l] compared with CON (4.8 +/- 0.1, P less than 0.05). Plasma insulin levels were similar in both trials. Muscle glycogen levels were also similar in CHO and CON both before and after exercise; accordingly, there was no difference between trials in the amount of glycogen used during the 2 h of exercise (CHO = 62.8 +/- 10.1 mmol/kg wet wt, CON = 56.9 +/- 10.1). The results of this study indicate that carbohydrate ingestion does not influence the utilization of muscle glycogen during prolonged strenuous exercise.  相似文献   

20.
The insulin-resistance effect of growth hormone (GH) administration has been frequently reported. The present study investigated the effect of GH administration on glucose tolerance and muscle GLUT4 protein expression in exercise-trained and untrained rats. Forty-eight rats were weight-matched and assigned to the following 4 groups: control, GH, exercise training, and exercise training + GH groups. After 2 weeks of GH injections (65 µg/kg/day) and exercise training, the glucose tolerance and insulin response were measured in these rats. The GLUT4 protein level, glycogen storage, and citrate synthase activity were determined in red gastrocnemius and plantaris muscles. Daily GH administration elevated the curves of the oral glucose tolerance test and insulin response compared with those of saline-injected control rats. Furthermore, exercise training completely eliminated this GH-induced insulin resistance as determined 18 h after the last bout of exercise training. Additionally, exercise training significantly increased muscle glycogen storage and GLUT4 protein levels. GH administration did not affect the GLUT4 protein and glycogen storage increases induced by exercise training, but the citrate synthase activity in the plantaris muscle was further elevated by GH administration to a level above that induced by training. In conclusion, this is the first study that demonstrates that regular exercise training prevents GH-induced insulin-resistance side effect in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号