首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-Ethylmaleimide-sensitive factor (NSF), soluble NSF attachment proteins (SNAPs), and SNAP receptor (neuronal SNARE) complexes form 20 S particles with a mass of 788 +/- 122 kDa as judged by scanning transmission electron microscopy. A single NSF hexamer and three alpha SNAP monomers reside within a 20 S particle as determined by quantitative amino acid analysis. In order to study the binding of alpha SNAP and NSF in solution, to define their binding domains, and to specify the role of oligomerization in their interaction, we fused domains of alpha SNAP and NSF to oligomerization modules derived from thrombospondin-1, a trimer, and cartilage oligomeric matrix protein, a pentamer, respectively. Binding studies with these fusion proteins reproduced the interaction of alpha SNAP and NSF N domains in the absence of the hexamerization domain of NSF (D2). Trimeric alpha SNAP (or its C-terminal half) is sufficient to recruit NSF even in the absence of SNARE complexes. Furthermore, pentameric NSF N domains are able to bind alpha SNAP in complex with SNAREs, whereas monomeric N domains do not. Our results demonstrate that the oligomerization of both NSF N domains and alpha SNAP provides a critical driving force for their interaction and the assembly of 20 S particles.  相似文献   

2.
The TSR superfamily is a diverse family of extracellular matrix and transmembrane proteins, many of which have functions related to regulating matrix organization, cell-cell interactions and cell guidance. This review samples some of the contemporary literature regarding TSR superfamily members (e.g. F-spondin, UNC-5, ADAMTS, papilin, and TRAP) where specific functions are assigned to the TSR domains. Combining these observations with the published crystal structure of the TSRs of thrombospondin-1 may hold a key to the development of therapeutic agents for fighting parasitic infection and tumor growth.  相似文献   

3.
Thrombospondin modules and angiogenesis   总被引:7,自引:0,他引:7  
Angiogenesis is a complex, multifactorial process that involves signals from endothelial cells and from the stoma. Extracellular matrix proteins participate in the modulation of growth factor response, contribute to the architecture of the vasculature and provide signals for the stabilization of mature capillary beds. The identification of the relevant extracellular matrix molecules and the characterization of their effects has been a central focus of research in vascular biology. Thrombospondin-1 is an extracellular glycoprotein first to be recognized as an inhibitor of angiogenesis more than a decade ago. Since then, much has been learned about its ability to regulate vascular growth in several angiogenesis models, functional domains have been identified, and mechanisms of action determined. This review summarizes current understanding on the effects of thrombospondin-1 and -2 during the process of angiogenesis. We will also extend our comments to ADAMTS1, a member of a relatively novel group of matrix metalloproteinases with thrombospondin repeats and shown to affect endothelial cell function and angiogenesis.  相似文献   

4.
Collagen triple helices, coiled coils and other oligomerization domains mediate the subunit assembly of a large number of proteins. Oligomerization leads to functional advantages of multivalency and high binding strength, increased structure stabilization and combined functions of different domains. These features seen in naturally occurring proteins can be engineered by protein design by combining oligomerization domains with functional domains.  相似文献   

5.
Cardiac remodeling after myocardial injury involves inflammation, angiogenesis, left ventricular hypertrophy and matrix remodeling. Thrombospondins (TSPs) belong to the group of matricellular proteins, which are non-structural extracellular matrix proteins that modulate cell–matrix interactions and cell function in injured tissues or tumors. They interact with different matrix and membrane-bound proteins due to their diverse functional domains. That the expression of TSPs strongly increases during cardiac stress or injury indicates an important role for them during cardiac remodeling. Recently, the protective properties of TSP expression against heart failure have been acknowledged. The current review will focus on the biological role of TSPs in the ischemic and hypertensive heart, and will describe the functional consequences of TSP polymorphisms in cardiac disease.  相似文献   

6.
Subunit oligomerization of many proteins is mediated by α-helical coiled-coil domains. 3,4-Hydrophobic heptad repeat sequences, the characteristic feature of the coiled-coil protein folding motif, have been found in a wide variety of gene products including cytoskeletal, nuclear, muscle, cell surface, extracellular, plasma, bacterial, and viral proteins. Whereas the majority of coiled-coil structures is represented by intracellular α-helical bundles that contain two polypeptide chains, examples of extracellular coiled-coil proteins are fewer in number. Most proteins located in the extracellular space form three-stranded α-helical assemblies. Recently, five-stranded coiled coils have been identified in thrombospondins 3 and 4 in cartilage oligomeric matrix protein, and the formation of a heterotetramer has been observed in in vitro studies with the recombinant asialoglycoprotein receptor oligomerization domain. Coiled-coil domains in laminins and probably also in tenascins and thrombospondins are responsible for the formation of tissue-specific isoforms by selective oligomerization of different polypeptide chains.  相似文献   

7.
CD69 and CD23 are leukocyte receptors with distinctive pattern of cell expression and functional features that belong to different C-type lectin receptor subfamilies. To assess the functional equivalence of different domains of these structurally related proteins, a series of CD69/CD23 chimeras exchanging the carbohydrate recognition domain, the neck region, and the transmembrane and cytoplasmic domains were generated. Biochemical analysis revealed the importance of the neck region (Cys68) in the dimerization of CD69. Functional analysis of these chimeras in RBL-2H3 mast cells and Jurkat T cell lines showed the interchangeability of structural domains of both proteins regarding Ca2+ fluxes, serotonin release, and TNF-alpha synthesis. The type of the signal transduced mainly relied on the cytoplasmic domain and was independent of receptor oligomerization. The cytoplasmic domain of CD69 transduced a Ca2+-mediated signaling that was dependent on the extracellular uptake of Ca2+. Furthermore, a significant production of TNF-alpha was induced through the cytoplasmic domain of CD69 in RBL-2H3 cells, which was additive to that promoted via FcepsilonRI, thus suggesting a role for CD69 in the late phase of reactions mediated by mast cells. Our results provide new important data on the functional equivalence of homologous domains of these two leukocyte receptors.  相似文献   

8.
The collagen family members as cell adhesion proteins   总被引:6,自引:0,他引:6  
The collagen family of extracellular matrix proteins has played a fundamental role in the evolution of multicellular animals. At the present, 28 triple helical proteins have been named as collagens and they can be divided into several subgroups based on their structural and functional properties. In tissues, the cells are anchored to collagenous structures. Often the interaction is indirect and mediated by matrix glycoproteins, but cells also express receptors, which have the ability to directly bind to the triple helical domains in collagens. Some receptors bind to sites that are abundant in all collagens. However, increasing evidence indicates that the coevolution of collagens and cell adhesion mechanisms has given rise to receptors that bind to specific motifs in collagens. These receptors may also recognize the different members of the large collagen family in a selective manner. This review summarizes the present knowledge about the properties of collagen subtypes as cell adhesion proteins.  相似文献   

9.
In addition to the major structural molecules, which are constitutively present in extracellular matrices, several proteins appear in the extracellular matrix only at specific stages in development or in association with specific pathological conditions. These proteins include thrombospondin-1 and -2, tenascin C, osteopontin, members of the cysteine-rich 61/connective tissue growth factor/nephroblastoma overexpressed family, and secreted protein acidic and rich in cysteine (osteonectin). These proteins play important roles in regulating cell fate during development and in the pathogenesis of several diseases in adult animals. We will review the interactions of T cells with this class of molecules and their resulting effects on T cell behavior. Receptors and signal transduction pathways that mediate the actions of matricellular proteins on T cells are beginning to be defined. Transgenic mice are providing new insights into the functions of these proteins in vivo and are yielding insights into the significance of their reported dysregulation in several human diseases.  相似文献   

10.
The study assessed immunohistochemically the location and distribution of various non-collagenous matrix proteins (fibronectin, laminin, tenascin-C, osteocalcin, thrombospondin-1, vitronectin and undulin) in musculoskeletal tissues of rat. Fibronectin and thrombospondin-1 were found to be ubiquitous in the studied tissues. High immunoreactivity of these proteins was found in the extracellular matrix of the anatomical sites where firm bindings are needed, i.e. between muscle fibres and fibre bundles, between the collagen fibres of a tendon and at myotendinous junctions, osteotendinous junctions and articular cartilage. Tenascin-C was found in the extracellular matrix of regions where especially high forces are transmitted from one tissue component to the other, such as myotendinous junctions and osteotendinous junctions. Laminin was demonstrated in the basement membranes of the muscle cells and capillaries of the muscle–tendon units. Osteocalc in immunoreactivity concentrated in the extracellular matrix of areas of newly formed bone tissue, i.e. in the subperiosteal and subchondral regions, osteoid tissue and mineralized fibrocartilage zone of the osteotendinous junction. Mild vitronectin activity could be seen in the extracellular matrix of the osteotendinous and myotendinous junctions, and high activity around the bone marrow cells. Undulin could be demonstrated in the extracellular matrix (i.e. on the collagen fibres) of the tendon and epimysium only. However, it was co-distributed with fibronectin and tenascin-C. Together, these findings on the normal location and distribution of these non-collagenous proteins in the musculoskeletal tissues help to form the basis of knowledge against which the location and distribution of the these proteins in various pathological processes could be compared.  相似文献   

11.
Matricellular proteins (MCPs) are actively expressed non-structural proteins present in the extracellular matrix, which rapidly turnover and possess regulatory roles, as well as mediate cell–cell interactions. MCPs characteristically contain binding sites for other extracellular proteins, cell surface receptors, growth factors, cytokines and proteases, that provide structural support for surrounding cells. MCPs are present in most organs, including brain, and play a major role in cell–cell interactions and tissue repair. Among the MCPs found in brain include thrombospondin-1/2, secreted protein acidic and rich in cysteine family (SPARC), including Hevin/SC1, Tenascin C and CYR61/Connective Tissue Growth Factor/Nov family of proteins, glypicans, galectins, plasminogen activator inhibitor (PAI-1), autotaxin, fibulin and perisostin. This review summarizes the potential role of MCPs in the pathogenesis of major neurological disorders, including Alzheimer’s disease, amyotrophic lateral sclerosis, ischemia, trauma, hepatic encephalopathy, Down’s syndrome, autism, multiple sclerosis, brain neoplasms, Parkinson’s disease and epilepsy. Potential therapeutic opportunities of MCP’s for these disorders are also considered in this review.  相似文献   

12.
To investigate structural features critical for signal initiation by Ag-stimulated immunoreceptors, we constructed a series of single-chain chimeric receptors that incorporate extracellular human Fc epsilonRIalpha for IgE binding, a variable transmembrane (TM) segment, and the ITAM-containing cytoplasmic tail of the TCR zeta-chain. We find that functional responses mediated by these receptors are strongly dependent on their TM sequences, and these responses are highly correlated to cross-link-dependent association with detergent-resistant lipid rafts. For one chimera designated alpha Fzeta, mutation of a TM cysteine abolishes robust signaling and lipid raft association. In addition, TM disulfide-mediated oligomerization of another chimeric receptor, alpha zetazeta, enhances signaling. These results demonstrate an important role for TM segments in immunoreceptor signaling and a strong correspondence between strength of signaling and cross-link-dependent partitioning into ordered membrane domains.  相似文献   

13.
Matricellular proteins play diverse roles in modulating cell behavior by engaging specific cell surface receptors and interacting with extracellular matrix proteins, secreted enzymes, and growth factors. Studies of such interactions involving thrombospondin-1 have revealed several physiological functions and roles in the pathogenesis of injury responses and cancer, but the relatively mild phenotypes of mice lacking thrombospondin-1 suggested that thrombospondin-1 would not be a central player that could be exploited therapeutically. Recent research focusing on signaling through its receptor CD47, however, has uncovered more critical roles for thrombospondin-1 in acute regulation of cardiovascular dynamics, hemostasis, immunity, and mitochondrial homeostasis. Several of these functions are mediated by potent and redundant inhibition of the canonical nitric oxide pathway. Conversely, elevated tissue thrombospondin-1 levels in major chronic diseases of aging may account for the deficient nitric oxide signaling that characterizes these diseases, and experimental therapeutics targeting CD47 show promise for treating such chronic diseases as well as acute stress conditions that are associated with elevated thrombospondin-1 expression.  相似文献   

14.
《Biophysical journal》2022,121(23):4452-4466
Number and brightness (N&B) analysis is a fluorescence spectroscopy technique to quantify oligomerization of the mobile fraction of proteins. Accurate results, however, rely on a good knowledge of nonfluorescent states of the fluorescent labels, especially of fluorescent proteins, which are widely used in biology. Fluorescent proteins have been characterized for confocal, but not camera-based, N&B, which allows, in principle, faster measurements over larger areas. Here, we calibrate camera-based N&B implemented on a total internal reflection fluorescence microscope for various fluorescent proteins by determining their propensity to be fluorescent. We then apply camera-based N&B in live CHO-K1 cells to determine the oligomerization state of the epidermal growth factor receptor (EGFR), a transmembrane receptor tyrosine kinase that is a crucial regulator of cell proliferation and survival with implications in many cancers. EGFR oligomerization in resting cells and its regulation by the plasma membrane microenvironment are still under debate. Therefore, we investigate the effects of extrinsic factors, including membrane organization, cytoskeletal structure, and ligand stimulation, and intrinsic factors, including mutations in various EGFR domains, on the receptor’s oligomerization. Our results demonstrate that EGFR oligomerization increases with removal of cholesterol or sphingolipids or the disruption of GM3-EGFR interactions, indicating raft association. However, oligomerization is not significantly influenced by the cytoskeleton. Mutations in either I706/V948 residues or E685/E687/E690 residues in the kinase and juxtamembrane domains, respectively, lead to a decrease in oligomerization, indicating their necessity for EGFR dimerization. Finally, EGFR phosphorylation is oligomerization dependent, involving the extracellular domain (550–580 residues). Coupled with biochemical investigations, camera-based N&B indicates that EGFR oligomerization and phosphorylation are the outcomes of several molecular interactions involving the lipid content and structure of the cell membrane and multiple residues in the kinase, juxtamembrane, and extracellular domains.  相似文献   

15.
The discoidin domain is a approximately 150 amino acid motif common in both eukaryotic and prokaryotic proteins. It is found in a variety of extracellular, intracellular and transmembrane multidomain proteins characterized by a considerable functional diversity, mostly involved in developmental processes. The biological role of the domain depends on its interactions with different molecules, including growth factors, phospholipids and lipids, galactose or its derivatives, and collagen. The conservation of the motif, as well as the serious physiological consequences of discoidin domain disorders underscore the importance of the fold, while the ability to accommodate such an extraordinarily broad range of ligand molecules makes it a fascinating research target. In present review we characterize the distinctive features of discoidin domains and briefly outline the biological role of this module in various eukaryotic proteins.  相似文献   

16.
Syntrophins are a family of 59 kDa peripheral membrane‐associated adapter proteins, containing multiple protein‐protein and protein‐lipid interaction domains. The syntrophin family consists of five isoforms that exhibit specific tissue distribution, distinct sub‐cellular localization and unique expression patterns implying their diverse functional roles. These syntrophin isoforms form multiple functional protein complexes and ensure proper localization of signalling proteins and their binding partners to specific membrane domains and provide appropriate spatiotemporal regulation of signalling pathways. Syntrophins consist of two PH domains, a PDZ domain and a conserved SU domain. The PH1 domain is split by the PDZ domain. The PH2 and the SU domain are involved in the interaction between syntrophin and the dystrophin‐glycoprotein complex (DGC). Syntrophins recruit various signalling proteins to DGC and link extracellular matrix to internal signalling apparatus via DGC. The different domains of the syntrophin isoforms are responsible for modulation of cytoskeleton. Syntrophins associate with cytoskeletal proteins and lead to various cellular responses by modulating the cytoskeleton. Syntrophins are involved in many physiological processes which involve cytoskeletal reorganization like insulin secretion, blood pressure regulation, myogenesis, cell migration, formation and retraction of focal adhesions. Syntrophins have been implicated in various pathologies like Alzheimer’s disease, muscular dystrophy, cancer. Their role in cytoskeletal organization and modulation makes them perfect candidates for further studies in various cancers and other ailments that involve cytoskeletal modulation. The role of syntrophins in cytoskeletal organization and modulation has not yet been comprehensively reviewed till now. This review focuses on syntrophins and highlights their role in cytoskeletal organization, modulation and dynamics via its involvement in different cell signalling networks.  相似文献   

17.
After onset of myocardial infarction (MI), the left ventricle (LV) undergoes a continuum of molecular, cellular, and extracellular responses that result in LV wall thinning, dilatation, and dysfunction. These dynamic changes in LV shape, size, and function are termed cardiac remodeling. If the cardiac healing after MI does not proceed properly, it could lead to cardiac rupture or maladaptive cardiac remodeling, such as further LV dilatation and dysfunction, and ultimately death. Although the precise molecular mechanisms in this cardiac healing process have not been fully elucidated, this process is strictly coordinated by the interaction of cells with their surrounding extracellular matrix (ECM) proteins. The components of ECM include basic structural proteins such as collagen, elastin and specialized proteins such as fibronectin, proteoglycans and matricellular proteins. Matricellular proteins are a class of non-structural and secreted proteins that probably exert regulatory functions through direct binding to cell surface receptors, other matrix proteins, and soluble extracellular factors such as growth factors and cytokines. This small group of proteins, which includes osteopontin, thrombospondin-1/2, tenascin, periostin, and secreted protein, acidic and rich in cysteine, shows a low level of expression in normal adult tissue, but is markedly upregulated during wound healing and tissue remodeling, including MI. In this review, we focus on the regulatory functions of matricellular proteins during cardiac tissue healing and remodeling after MI.  相似文献   

18.
The concept of a matricellular protein was first proposed by Paul Bornstein in the mid-1990s to account for the non-lethal phenotypes of mice with inactivated genes encoding thrombospondin-1, tenascin-C, or SPARC. It was also recognized that these extracellular matrix proteins were primarily counter or de-adhesive. This review reappraises the matricellular concept after nearly two decades of continuous investigation. The expanded matricellular family as well as the diverse and often unexpected functions, cellular location, and interacting partners/receptors of matricellular proteins are considered. Development of therapeutic strategies that target matricellular proteins are discussed in the context of pathology and regenerative medicine.  相似文献   

19.
Ligand-induced oligomerization is a universal phenomenon among growth factor receptors. Although the mechanism involved is yet to be defined, much evidence indicates that receptor oligomerization plays a crucial role in receptor activation and signal transduction. Here we show that epidermal growth factor (EGF) is able to stimulate the oligomerization of a recombinant, soluble, extracellular ligand-binding domain of EGF receptor. Covalent cross-linking experiments, analysis by sodium dodecyl sulfate-gel electrophoresis, size exclusion chromatography, and electron microscopy demonstrate that receptor dimers, trimers and larger multimers are formed in response to EGF. This establishes that receptor oligomerization is an intrinsic property of the extracellular ligand-binding domain of EGF receptor. Ligand-induced conformational change in the extracellular domain will stimulate receptor-receptor interactions. This may bring about the allosteric change involved in signal transduction from the extracellular domain across the plasma membrane, resulting in the activation of the cytoplasmic kinase domain. Electron microscopic images of individual extracellular ligand-binding domains appear as clusters of four similarly-sized stain-excluding areas arranged around a central, relatively less stain-excluded area. This suggests that the extracellular ligand-binding domain is structurally composed of four separate domains.  相似文献   

20.
The lysyl oxidase family of proteins is primarily known for its critical role in catalyzing extracellular oxidative deamination of hydroxylysine and lysine residues in collagens, and lysine residues in elastin required for connective tissue structure and function. Lysyl oxidases have additional important biological functions in health and disease. While the enzyme domains are highly conserved, the propeptide regions are less uniform, and have biological activity, some of which are independent of their respective enzymes. This review summarizes what has been published regarding the functions of the propeptide regions of this family of proteins in the context of extracellular matrix biosynthesis, fibrosis and cancer biology. Although much has been learned, there is a need for greater attention to structure/function relationships and mechanisms to more fully understand these multifunctional proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号