首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R. J. Erickson 《CMAJ》1917,7(9):817-819
  相似文献   

2.
3.
4.
5.
The purpose of this study was to evaluate the oxidative capacities and the rate of energy synthesis in isolated mitochondria extracted from normal and post-ischemic myocardium. Isolated rat hearts were perfused according to the working mode with a Krebs Heinseleit buffer containing glucose (11 mM), insulin (10 IU/1) and caprylic acid (25 M). After a 15 min perfusion in normoxic conditions, the hearts were subjected to a 20 min local zero-flow ischemia followed by a 20 min reperfusion. During the perfusion, the aortic and coronary flows, the aortic pressure and the electrocardiogram were monitored. At the end of the reperfusion period, the non-ischemic and ischemic zones (NIZ and IZ, respectively) were separated and the mitochondria were harvested from each zone. The oxygen uptake and the rate of energy production of the NIZ and IZ mitochondria were then assessed with palmitoylcarnitine as substrate in 2 buffers differing in their free calcium concentration (0.041 and 0.150 M). Ischemia provoked a 50% reduction of coronary and aortic flows. The reperfusion of the IZ allowed the partial recovery of coronary flow, but the aortic flow decreased beneath its ischemic value because of the occurrence of severe arrhythmias, stunning and probably hibernation. The IZ mitochondria displayed a lower rate of oxygen consumption, whatever the buffer free calcium concentration. Conversely, their rate of energy production was increased, indicating that their metabolic efficiency was improved as compared to NIZ mitochondria. This might be due to the mitochondrial calcium overload persisting during reperfusion, to the activation of the inner membrane Na+/Ca2+ exchange and to a significant mitochondrial swelling. On the other hand, the presence of an elevated free calcium concentration in the respiration buffer provoked some energy wasting characterized by a constant AMP production. This was attributed to some accumulation of acetate and the activation of the energy-consuming acetylCoA synthetase. In conclusion, ischemia and reperfusion did not alter the membrane integrity of the mitochondria but improved their metabolic efficiency. Nevertheless, these in vitro results can not reflect the mitochondrial function in the reperfused myocardium. The mitochondrial calcium overload reported to last during reperfusion in the cardiomyocytes might mimic the free calcium-induced reduction of metabolic efficiency observed in vitro in the present study. The resulting energy wasting might be responsible for the contractile abnormalities noticed in the reperfused myocardium.  相似文献   

6.
Myocardial fatty acid oxidation during ischemia and reperfusion   总被引:1,自引:0,他引:1  
Inhibition of fatty acid oxidation is an early event in myocardial ischemia that most likely contributes to tissue injury by the accumulation of potentially toxic intermediates such as acylCoA and acylcarnitine. After reperfusion both myocardial oxygen consumption and fatty acid oxidation may rapidly recover to preischemic levels, even when contractile function remains depressed. The mechanisms underlying the apparent dissociation between contractile function and oxidative metabolism early during reperfusion are still controversial. In isolated rat hearts subjected to 60 min of no-flow ischemia myocardial oxygen consumption and oxidation of palmitate were lowered during reperfusion by 3 mM of NiCl2 and by 6 µM of ruthenium red. The results provide indirect evidence for the hypothesis that intracellular calcium transport may be involved in the mechanisms responsible for the high oxidative metabolic rate early after reperfusion  相似文献   

7.
Myocardial taurine,development and vulnerability to ischemia   总被引:1,自引:0,他引:1  
Modi P  Suleiman MS 《Amino acids》2004,26(1):65-70
Summary. Depleting intracellular taurine in heart cells improves their resistance to ischemia and reperfusion injury. The aim of this work was to see whether physiologically low levels of endogenous taurine also reflect a reduced vulnerability of the myocardium to cardiac insults. The myocardial concentration of taurine was measured during different stages of development and compared with vulnerability to ischemia and reperfusion injury in the rat and in pediatric patients undergoing cardiac surgery.Rat hearts with relatively lower levels of taurine were significantly more resistant to an ischemic inult and there was a strong negative correlation between taurine content and recovery. Childrens hearts had significantly lower taurine levels compared to infants hearts which was consistent with their known increased resistance to an ischemic cardioplegic insult (Imura et al., 2001). This work shows that the changes in the concentration of myocardial taurine during development correlate with vulnerability to ischemia where low myocardial taurine is associated with improved recovery upon reperfusion.  相似文献   

8.
Mitochondria contribute to myocyte injury during ischemia. After 30 and 45 min of ischemia in the isolated perfused rabbit heart, subsarcolemmal mitochondria (SSM), located beneath the plasma membrane, sustain a decrease in oxidative phosphorylation through cytochrome oxidase. In contrast, oxidation through cytochrome oxidase in interfibrillar mitochondria (IFM), located between the myofibrils, remains unaffected. Cytochrome oxidase activity in the intact membrane requires an inner mitochondrial membrane lipid environment enriched in cardiolipin. During ischemia, the content of cardiolipin decreased only in SSM, whereas the content of other phospholipids was preserved. Ischemia did not alter the composition of the cardiolipin that remained in SSM. Cardiolipin content was preserved in IFM during ischemia. Thus cardiolipin is a relatively early target of ischemic mitochondrial damage, leading to loss of oxidative phosphorylation through cytochrome oxidase in SSM.  相似文献   

9.
Late preconditioning (PC) against myocardial stunning develops after coronary artery occlusion (CAO) at rest and subsequent reperfusion. We investigated whether late PC occurs after exercise-induced ischemia (high-flow ischemia) in dogs. A circumflex coronary artery stenosis (by using occluders) was set up before the onset of treadmill exercise in nine chronically instrumented dogs to suppress exercise-induced increase in mean coronary blood flow velocity (CBFV, Doppler) without simultaneously affecting left ventricular (LV) wall thickening (Wth) at rest. Two similar exercises were performed 24 h apart. On day 1, LV Wth was reduced by 84 +/- 5% (P < 0.01), and exercise-induced increases in transmural myocardial blood flow (MBF, fluorescent microspheres) in the ischemic zone were blunted. LV Wth was depressed throughout the first 10 h and returned to its baseline value after 24 h. On day 2, changes in LV Wth and MBF were similar as was the time course for LV Wth recovery, indicating lack of late PC. Also, CBFV responses to acetylcholine, nitroglycerin, and reactive hyperemia (20-s CAO) were not significantly different on days 1 and 2. Similar results were obtained in a subgroup of four additional dogs with more severe stenosis during exercise. Late PC against myocardial stunning was confirmed to occur in a model of 10-min CAO followed by coronary artery reperfusion (CAR) in another four dogs. Thus in contrast with CAO at rest followed by CAR, severe myocardial ischemia in coronary flow-limited exercising dogs does not induce late PC against myocardial stunning.  相似文献   

10.
Injections of human chorionic gonadotropin (HCG) have been claimed to aid in weight reduction by reducing hunger, and affecting mood as well as aiding in localized (spot) reduction. We have tested these claims in a double-blind randomized trial using injections of HCG or placebo. Weight loss was identical between the two groups, and there was no evidence for differential effects on hunger, mood or localized body measurements. Placebo injections, therefore, appear to be as effective as HCG in the treatment of obesity.  相似文献   

11.
12.
13.
To determine whether prior acute Beta blockade protects the heart against the deleterious effects of normothermic low flow global ischemia on myocardial function, aortic pressure, developed pressure, dP/dtmax and end diastolic pressure were monitored in isolated perfused rabbit hearts prior to, during and following 30 and 60 min ischemia, during which either Krebs-Henseleit (control) or Beta blocking agents, Bevantolol (cardioselective) or Propranolol (non-selective) were perfused through the heart. Control hearts made ischemic for 30 min and then reperfused had significantly elevated end diastolic (p < .01) and aortic pressures (p < .01) and reduced developed pressure relative to baseline (p < .05). Hearts treated with Bevantolol or Propranolol (3 × 10-5 m/l) 5 min prior to and during 30 min ischemia recovered preischemic developed pressure and dP/dtmax (p > 0.05), while end diastolic pressure was elevated (p < .01, p < .05 respectively). Aortic pressure was unchanged relative to baseline (p > .05). Comparison of indices from hearts under Beta blockade with controls showed that following 30 min ischemia and recovery, the Bevantolol treated group had reduced aortic pressure (p < .01) and end diastolic pressure (p < .05) and increased percent developed pressure and percent dP/dtmax (p < .001) relative to control. In the propranolol treated group, end diastolic pressure was reduced and percent developed pressure (p < .01) and percent dP/dtmax (p < .001) were increased relative to unblocked hearts. Following 60 min ischemia and 30 min reperfusion, reduction in all functional indices occurred, however dP/dtmax was unchanged from baseline in the Propranolol and Bevantolol treated groups. Comparison between groups showed that the Bevantolol treated group had significantly better dP/dtmax and developed pressure (p < .05), whereas the Propranolol group shows no significant difference from baseline (p > .05) (K-H). We conclude that following short periods of ischemia, Beta blockade protects the heart from deleterious function effects of ischemia but that the protective effect is diminished in Bevantolol relative to Propranolol treatments following prolonged ischemia. The data indicates that the beneficial effects of Beta blockade in reducing ischemic induced damage occurs early during conditions of ischemia such as would be present in the setting of acute myocardial infarction.  相似文献   

14.
Compelling evidence supports contributions of glutamate receptor overactivation ('excitotoxicity') to neurodegeneration in both acute conditions, such as stroke, and chronic neurodegenerative conditions, such as amyotrophic lateral sclerosis. However, anti-excitotoxic therapeutic trials, which have generally targeted highly Ca2+ permeable NMDA-type glutamate channels, have to date failed to demonstrate impressive efficacy. Whereas most AMPA type glutamate channels are Ca2+ impermeable, an evolving body of evidence supports the contention that relatively unusual Ca2+ permeable AMPA channels might be crucial contributors to injury in these conditions. These channels are preferentially expressed in discrete neuronal subpopulations, and their numbers appear to be upregulated in amyotrophic lateral sclerosis and stroke. In addition, unlike NMDA channels, Ca2+ permeable AMPA channels are not blocked by Mg2+, but are highly permeable to another potentially harmful endogenous cation, Zn2+. The targeting of these channels might provide efficacious new avenues in the therapy of certain neurological diseases.  相似文献   

15.
Inducible nitric oxide synthase (iNOS) plays an important role in the inflammatory process of certain major cardiac disorders including myocardial infarction and allograft rejection. However, the role of iNOS in acute myocardial ischemia has not been well defined. We determined the effects of genetically disruption of the intact iNOS system on cardiac tolerance to ischemia/reperfusion injury. Adult male wild-type (WT) and iNOS knockout (KO) B6,129 mice were subjected to 20 min global ischemia and 30 min reperfusion in a Langendorff isolated perfused heart model (37 degrees C, n = 10/each group). Ventricular contractile function, heart rate, coronary flow, and leakage of intracellular enzymes (CK and LDH) were not significantly different between the groups during pre-ischemia as well as reperfusion period (P > 0.05). Myocardial infarct size was also not significantly different between WT (20.2+/-2.0% of risk area) and KO mice (23.5+/-3.8%; Mean+/-SEM, P > 0.05). However, the post-ischemic heart rate was significantly preserved in KO as compared to WT (P < 0.05). We conclude that disruption of iNOS gene does not exacerbate ischemia/ reperfusion injury in the heart.  相似文献   

16.
This study shows that the hydrophobic cation octylguanidine protects against myocardial damage induced by ischemia-reperfusion. The protective effect of the amine was analyzed after 5 min of coronary occlusion followed by 5 min reperfusion in rat hearts. ECG tracings from rats treated with an i.v. injection of 5 mg/kg of octylguanidine showed a total absence of post-reperfusion arrhythmias, conversely to what was observed in untreated rats. The histological images showed that myocardium fibers from treated rats were in good shape and retained their striae, also there was absence of edema. Furthermore, the accumulation of 201Tl in hearts from these rats indicated that the tissue did not suffer disruption or impairment in membrane functions. The above correlated with the fact that mitochondria isolated from the ventricular free wall from treated rats preserved their ability to synthesize ATP. We propose that the protective effect of octylguanidine might be due to its documented inhibitory action on the opening of mitochondrial non-specific pores, a mechanism which is associated in heart injury as induced by reperfusion. (Mol Cell Biochem 269: 19–26, 2005)  相似文献   

17.
Kemp GJ 《Mitochondrion》2004,4(5-6):629-640
In peripheral vascular disease, impaired muscle energy metabolism is assumed to be due mainly to defective vascular O2 supply, the resulting cellular hypoxia inhibiting oxidative ATP synthesis. Older work suggested a compensatory increase in muscle aerobic enzymes, but more recent studies suggest a relative decrease in some mitochondrial components and an accumulation of damage in mitochondrial DNA, perhaps due to reactive oxygen species. However, to establish whether in vivo muscle mitochondria suffer from anything other than a low concentration of O2 will require more knowledge of the mitochondrial behaviour at low PO2, and the actual cell PO2 during exercise.  相似文献   

18.
19.
In patients with cyanotic congenital heart disease (CCHD), a right-to-left shunt results in systemic hypoxemia. Systemic hypoxemia incites a compensatory erythrocytosis, which increases whole blood viscosity. We considered that these changes might adversely influence myocardial perfusion in CCHD patients. Basal and hyperemic (intravenous dipyridamole) perfusion measurements were obtained with [13N]ammonia positron emission tomographic imaging in left (LV) and right (RV) ventricular and septal myocardium in 14 adults with CCHD [age: 34.1 yr (SD 6.5)]; hematocrit: 62.2% (SD 4.8)] and 10 healthy controls [age: 34.1 yr (SD 6.5)]. In patients, basal perfusion measurements were higher in LV [0.77 (SD 0.24) vs. 0.55 ml x min(-1) x g(-1) (SD 0.09), P < 0.02], septum [0.71 (SD 0.16) vs. 0.49 ml x min(-1) x g(-1) (SD 0.09), P < 0.001], and RV [0.77 (SD 0.30) vs. 0.38 ml x min(-1) x g(-1) (SD 0.09), P < 0.001]. However, basal measurements normalized for the rate-pressure product were similar to those of controls. Calculated oxygen delivery relative to rate-pressure product was higher in the patients [2.2 (SD 0.8) vs. 1.6 (SD 0.4) x 10(-5) ml O2 x min(-1) x g tissue(-1) x (beats x mmHg)(-1) in the LV, P < 0.05, and 2.0 (SD 0.7) vs. 1.4 (SD 0.3) x 10(-5) ml O2 x min(-1) x g tissue(-1) x (beats x mmHg)(-1) in the septum, P < 0.01]. Hyperemic perfusion measurements in CCHD patients did not differ from controls [LV, 1.67 (SD 0.60) vs. 1.95 ml x min(-1) x g(-1) (SD 0.46); septum, 1.44 (SD 0.56) vs. 1.98 ml x min(-1) x g(-1) (SD 0.69); RV, 1.56 (SD 0.56) vs. 1.65 ml x min(-1) x g(-1) (SD 0.64), P = not significant], and coronary vascular resistances were comparable [LV, 55 (SD 25) vs. 48 mmHg x ml(-1) x g x min (SD 16); septum, 67 (SD 35) vs. 50 mmHg x ml(-1) x g x min (SD 21); RV, 59 (SD 26) vs. 61 mmHg x ml(-1) x g x min (SD 27), P = not significant]. These findings suggest that adult CCHD patients have remodeling of the coronary circulation to compensate for the rheologic changes attending chronic hypoxemia.  相似文献   

20.
The aim of the study was to determine the prostacyclin (PGI2) and thromboxane A2 (TXA2) synthetase activities of myocardial tissue and their variation during ischemia and reperfusion. Regional ischemia was induced by 10 min occlusion of the left anterior descending coronary artery in isolated Langendorff rabbit hearts. Biosynthesis of PGI2 and TXA2 were carried out by using arachidonic acid as substrate and left ventricle microsomes (LVM) from ischemic and non-ischemic areas as sources of PGI2 and TXA2 synthetase. 6-keto-PGF1 alpha and TXB2, stable metabolites of PGI2 and TXA2 respectively, were determined by radioimmunoassay. Experiments carried out under the adopted conditions showed that LVM were able to synthetise PGI2 as well as TXA2 from arachidonic acid. On the other hand, ischemia depressed both PGI2 and TXA2 synthetase activities of cardiac tissue: the depression was more pronounced on TXA2 synthetase than on PGI2 synthetase with no significant difference between ischemic and non-ischemic regions. Moreover, ischemia increased the ratio 6-keto-PGF1 alpha/TXB2 indicating therefore that it can facilitate the formation of PGI2. The post ischemic reperfusion of the heart counteracted the decrease in PGI2 synthetase induced by ischemia which returned to the normal level: reperfusion also slightly reversed the decrease in TXA2 the decrease in TXA2 synthetase. However, the diminution in TXA2 synthetase of non-ischemic myocardium was attenuated but it remained lower than the normal level. These results suggested that the whole left ventricle is affected by regional ischemia. Furthermore it appears that myocardial TXA2 synthetase is more vulnerable than PGI2 synthetase to a lack of oxygen and nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号