首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the earliest events in the signal transduction cascade that initiates a DNA damage checkpoint is the phosphorylation on serine 139 of histone H2AX (gammaH2AX) at DNA double-strand breaks (DSBs). However, the role of gammaH2AX in DNA repair is poorly understood. To address this question, we generated chicken DT40 cells carrying a serine to alanine mutation at position 139 of H2AX (H2AX(-/S139A)) and examined their DNA repair capacity. H2AX(-/S139A) cells exhibited defective homologous recombinational repair (HR) as manifested by delayed Rad51 focus formation following ionizing radiation (IR) and hypersensitivity to the topoisomerase I inhibitor, camptothecin (CPT), which causes DSBs at replication blockage. Deletion of the Rad51 paralog gene, XRCC3, also delays Rad51 focus formation. To test the interaction of Xrcc3 and gammaH2AX, we disrupted XRCC3 in H2AX(-/S139A) cells. XRCC3(-/-)/H2AX(-/S139A) mutants were not viable, although this synthetic lethality was reversed by inserting a transgene that conditionally expresses wild-type H2AX. Upon repression of the wild-type H2AX transgene, XRCC3(-/-)/H2AX(-/S139A) cells failed to form Rad51 foci and exhibited markedly increased levels of chromosomal aberrations after CPT treatment. These results indicate that H2AX and XRCC3 act in separate arms of a branched pathway to facilitate Rad51 assembly.  相似文献   

2.
Chromatin modification plays an important role in modulating the access of homologous recombination proteins to the sites of DNA damage. TIP49 is highly conserved component of chromatin modification/remodeling complexes, but its involvement in homologous recombination repair in mammalian cells has not been examined in details. In the present communication we studied the role of TIP49 in recruitment of the key homologous recombination protein RAD51 to sites of DNA damage. RAD51 redistribution to chromatin and nuclear foci formation induced by double-strand breaks and interstrand crosslinks were followed under conditions of TIP49 depletion by RNA interference. TIP49 silencing reduced RAD51 recruitment to chromatin and nuclear foci formation to about 50% of that of the control. Silencing of TIP48, which is closely related to TIP49, induced a similar reduction in RAD51 foci formation. RAD51 foci reduction in TIP49-silenced cells was not a result of defective DNA damage checkpoint signaling as judged by the normal histone H2AX phosphorylation and cell cycle distribution. Treatment with the histone deacetylase inhibitor sodium butyrate restored RAD51 foci formation in the TIP49-depleted cells. The results suggest that as a constituent of chromatin modification complexes TIP49 may facilitate the access of the repair machinery to the sites of DNA damage.  相似文献   

3.
Recruitment of the homologous recombination machinery to sites of double‐strand breaks is a cell cycle‐regulated event requiring entry into S phase and CDK1 activity. Here, we demonstrate that the central recombination protein, Rad52, forms foci independent of DNA replication, and its recruitment requires B‐type cyclin/CDK1 activity. Induction of the intra‐S‐phase checkpoint by hydroxyurea (HU) inhibits Rad52 focus formation in response to ionizing radiation. This inhibition is dependent upon Mec1/Tel1 kinase activity, as HU‐treated cells form Rad52 foci in the presence of the PI3 kinase inhibitor caffeine. These Rad52 foci colocalize with foci formed by the replication clamp PCNA. These results indicate that Mec1 activity inhibits the recruitment of Rad52 to both sites of DNA damage and stalled replication forks during the intra‐S‐phase checkpoint. We propose that B‐type cyclins promote the recruitment of Rad52 to sites of DNA damage, whereas Mec1 inhibits spurious recombination at stalled replication forks.  相似文献   

4.
We have studied the rate of DNA synthesis, cell cycle distribution, formation of gamma-H2AX, and Rad51 nuclear foci and association of Rad51 with the nuclear matrix after treatment of HeLa cells with the interstrand crosslinking agent mitomycin C (MMC) in the presence of the kinase inhibitors caffeine and wortmannin. The results showed that MMC treatment arrested the cells in S-phase and induced the appearance of gamma-H2AX and Rad51 nuclear foci, accompanied with a sequestering of Rad51 to the nuclear matrix. These effects were abrogated by caffeine, which inhibits the Ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) kinases. However, wortmannin at a concentration that inhibits ATM, but not ATR did not affect cell cycle progression, damage-induced phosphorylation of H2AX and Rad51 foci formation, and association with the nuclear matrix, suggesting that the S-phase arrest induced by MMC is ATR-dependent. These findings were confirmed by experiments with ATR-deficient and AT cells. They indicate that the DNA damage ATR-dependent S-phase checkpoint pathway may regulate the spatiotemporal organization of the process of repair of interstrand crosslinks.  相似文献   

5.
5-Fluorouracil (5-FU) has long been a mainstay antimetabolite chemotherapeutic drug for the treatment of major solid tumors, particularly colorectal cancer. 5-FU is processed intracellularly to yield active metabolites that compromise RNA and DNA metabolism. However, the mechanisms responsible for its cytotoxicity are not fully understood. From the phenotypic analysis of mutant chicken B lymphoma DT40 cells, we found that homologous recombinational repair (HRR), involving Rad54 and BRCA2, and the ATR-Chk1 signaling pathway, involving Rad9 and Rad17, significantly contribute to 5-FU tolerance. 5-FU induced γH2AX nuclear foci, which were colocalized with the key HRR factor Rad51, but not with DNA double-strand breaks (DSBs), in a dose-dependent manner as cells accumulated in the S phase. Inhibition of Chk1 kinase by UCN-01 increased 5-FU-induced γH2AX and enhanced 5-FU cytotoxicity not only in wild-type cells but also in Rad54- or BRCA2-deficient cells, suggesting that HRR and Chk1 kinase have non-overlapping roles in 5-FU tolerance. 5-FU-induced Chk1 phosphorylation was significantly impaired in Rad9- or Rad17-deficient cells, and severe γH2AX nuclear foci and DSBs were formed, which was followed by apoptosis. Finally, inhibition of Chk1 kinase by UCN-01 increased 5-FU-induced γH2AX nuclear foci and enhanced 5-FU cytotoxicity in Rad9- or Rad17-deficient cells. These results suggest that Rad9- and Rad17-independent activation of the ATR-Chk1 signaling pathway also significantly contributes to 5-FU tolerance.  相似文献   

6.
In mammalian and budding yeast cells treated with genotoxic agents, different proteins implicated in detecting, signalling or repairing DNA lesions form nuclear foci. We studied foci formed by proteins involved in these processes in living fission yeast cells, which is amenable to genetic and molecular analysis. Using fluorescent tags, we analysed subnuclear localisations of the DNA damage checkpoint protein Rad9, of the homologous recombination protein Rad22 and of PCNA, which are implicated in many aspects of DNA metabolism. After inducing double strand breaks (DSBs) with ionising radiations, Rad22, Rad9 and PCNA form a low number of nuclear foci. Rad9 recruitment to foci depends on the presence of Rad1, Hus1 and Rad17, but is independent of downstream checkpoint effectors and of homologous recombination proteins. Likewise, Rad22 and PCNA form foci despite inactive homologous recombination repair and impaired DNA damage checkpoint. Rad22 and Rad9 foci co-localise completely, whereas PCNA co-localises with Rad22 and Rad9 only partially. Foci do not disassemble in cells unable to repair DNA by homologous recombination. Thus, in fission yeast, DSBs are detected by the DNA damage checkpoint and are repaired by homologous recombination at a few spatially confined subnuclear compartments where Rad22, Rad9 and PCNA concentrate independently.  相似文献   

7.
The Rad9/Rad1/Hus1 complex functions to facilitate the ATR-mediated phosphorylation of several substrates that control the checkpoint arrest induced by DNA damage. Here we show that in response to genotoxic stress induced by different types of damaging agents, Rad9 rapidly relocalized to sites of single stranded DNA, as visualized by discrete nuclear foci that co-localize with RPA. UV light-induced Rad9 foci also colocalized with TopBP1 and γ-H2AX. Interestingly, Rad9 foci were predominately formed in G1 and S phase after UV light, while treatment of cells with ionizing radiation (IR) resulted in accumulation of Rad9 into foci in S and G2. Photobleaching experiments in living cells revealed that the Rad9 protein is highly mobile in undamaged cells. However, genotoxic stress induced the immobilization of a large proportion of the protein. The proportion of Rad9 immobilization was larger in S phase and the accumulation to sites of locally damaged areas induced by UV-laser irradiation was faster during DNA replication. Inactivation of nucleotide excision repair by knock down of XPA and XPC resulted in a decrease of G1 phase cells that displayed Rad9 foci in response to UV light, whereas IR-induced Rad9 foci were not affected. In contrast, downregulation of CtIP, which promotes DSB resection, abrogated the IR-induced Rad9 foci. These findings show that due to processing of DNA lesions into a common intermediate, which occurs in a cell cycle-dependent manner, Rad9 is able to respond to different types of genotoxic stress.  相似文献   

8.
BACKGROUND: The response of eukaryotic cells to double-strand breaks in genomic DNA includes the sequestration of many factors into nuclear foci. Recently it has been reported that a member of the histone H2A family, H2AX, becomes extensively phosphorylated within 1-3 minutes of DNA damage and forms foci at break sites. RESULTS: In this work, we examine the role of H2AX phosphorylation in focus formation by several repair-related complexes, and investigate what factors may be involved in initiating this response. Using two different methods to create DNA double-strand breaks in human cells, we found that the repair factors Rad50 and Rad51 each colocalized with phosphorylated H2AX (gamma-H2AX) foci after DNA damage. The product of the tumor suppressor gene BRCA1 also colocalized with gamma-H2AX and was recruited to these sites before Rad50 or Rad51. Exposure of cells to the fungal inhibitor wortmannin eliminated focus formation by all repair factors examined, suggesting a role for the phosphoinositide (PI)-3 family of protein kinases in mediating this response. Wortmannin treatment was effective only when it was added early enough to prevent gamma-H2AX formation, indicating that gamma-H2AX is necessary for the recruitment of other factors to the sites of DNA damage. DNA repair-deficient cells exhibit a substantially reduced ability to increase the phosphorylation of H2AX in response to ionizing radiation, consistent with a role for gamma-H2AX in DNA repair. CONCLUSIONS: The pattern of gamma-H2AX foci that is established within a few minutes of DNA damage accounts for the patterns of Rad50, Rad51, and Brca1 foci seen much later during recovery from damage. The evidence presented strongly supports a role for the gamma-H2AX and the PI-3 protein kinase family in focus formation at sites of double-strand breaks and suggests the possibility of a change in chromatin structure accompanying double-strand break repair.  相似文献   

9.
Translesion synthesis by DNA polymerase eta (polη) is one mechanism by which cancer cells can tolerate DNA damage by platinum-based anti-cancer drugs. Cells lacking polη are sensitive to these agents. To help define the consequences of polη-deficiency, we characterized the effects of equitoxic doses of cisplatin and carboplatin on cell cycle progression and activation of DNA damage response pathways in a human cell line lacking polη. We show that both cisplatin and carboplatin induce strong S-phase arrest in polη-deficient XP30RO cells, associated with reduced expression of cyclin E and cyclin B. PIK kinase-mediated phosphorylation of Chk1, H2AX and RPA2 was strongly activated by both cisplatin and carboplatin, but phosphorylation of these proteins was induced earlier by cisplatin than by an equitoxic dose of carboplatin. Compared to Chk1 and H2AX phosphorylation, RPA2 hyperphosphorylation on serine4/serine8 is a late event in response to platinum-induced DNA damage. We directly demonstrate, using dual-labeling flow cytometry, that damage-induced phosphorylation of RPA2 on serine4/serine8 occurs primarily in the S and G2 phases of the cell cycle, and show that the timing of RPA2 phosphorylation can be modulated by inhibition of the checkpoint kinase Chk1. Furthermore, Chk1 inhibition sensitizes polη-deficient cells to the cytotoxic effects of carboplatin. Both hyperphosphorylated RPA2 and the homologous recombination protein Rad51 are present in nuclear foci after cisplatin treatment, but these are separable events in individual cells. These results provide insight into the relationship between cell cycle regulation and processing of platinum-induced DNA damage in human cells when polη-mediated TLS is compromised.  相似文献   

10.
Rad51, a eukaryotic RecA homologue, plays a central role in homologous recombinational repair of DNA double-strand breaks (DSBs) in yeast and is conserved from yeast to human. Rad51 shows punctuate nuclear localization in human cells, called Rad51 foci, typically during the S phase (Tashiro, S., N. Kotomura, A. Shinohara, K. Tanaka, K. Ueda, and N. Kamada. 1996. Oncogene. 12:2165-2170). However, the topological relationships that exist in human S phase nuclei between Rad51 foci and damaged chromatin have not been studied thus far. Here, we report on ultraviolet microirradiation experiments of small nuclear areas and on whole cell ultraviolet C (UVC) irradiation experiments performed with a human fibroblast cell line. Before UV irradiation, nuclear DNA was sensitized by the incorporation of halogenated thymidine analogues. These experiments demonstrate the redistribution of Rad51 to the selectively damaged, labeled chromatin. Rad51 recruitment takes place from Rad51 foci scattered throughout the nucleus of nonirradiated cells in S phase. We also demonstrate the preferential association of Rad51 foci with postreplicative chromatin in contrast to replicating chromatin using a double labeling procedure with halogenated thymidine analogues. This finding supports a role of Rad51 in recombinational repair processes of DNA damage present in postreplicative chromatin.  相似文献   

11.
In budding yeast, the Rad9 protein is an important player in the maintenance of genomic integrity and has a well-characterised role in DNA damage checkpoint activation. Recently, roles for different post-translational histone modifications in the DNA damage response, including H2A serine 129 phosphorylation and H3 lysine 79 methylation, have also been demonstrated. Here, we show that Rad9 recruitment to foci and bulk chromatin occurs specifically after ionising radiation treatment in G2 cells. This stable recruitment correlates with late stages of double strand break (DSB) repair and, surprisingly, it is the hypophosphorylated form of Rad9 that is retained on chromatin rather than the hyperphosphorylated, checkpoint-associated, form. Stable Rad9 accumulation in foci requires the Mec1 kinase and two independently regulated histone modifications, H2A phosphorylation and Dot1-dependent H3 methylation. In addition, Rad9 is selectively recruited to a subset of Rad52 repair foci. These results, together with the observation that rad9Delta cells are defective in repair of IR breaks in G2, strongly indicate a novel post checkpoint activation role for Rad9 in promoting efficient repair of DNA DSBs by homologous recombination.  相似文献   

12.
The Bloom syndrome helicase (BLM) is critical for genomic stability. A defect in BLM activity results in the cancer-predisposing Bloom syndrome (BS). Here, we report that BLM-deficient cell lines and primary fibroblasts display an endogenously activated DNA double-strand break checkpoint response with prominent levels of phosphorylated histone H2AX (gamma-H2AX), Chk2 (p(T68)Chk2), and ATM (p(S1981)ATM) colocalizing in nuclear foci. Interestingly, the mitotic fraction of gamma-H2AX foci did not seem to be higher in BLM-deficient cells, indicating that these lesions form transiently during interphase. Pulse labeling with iododeoxyuridine and immunofluorescence microscopy showed the colocalization of gamma-H2AX, ATM, and Chk2 together with replication foci. Those foci costained for Rad51, indicating homologous recombination at these replication sites. We therefore analyzed replication in BS cells using a single molecule approach on combed DNA fibers. In addition to a higher frequency of replication fork barriers, BS cells displayed a reduced average fork velocity and global reduction of interorigin distances indicative of an elevated frequency of origin firing. Because BS is one of the most penetrant cancer-predisposing hereditary diseases, it is likely that the lack of BLM engages the cells in a situation similar to precancerous tissues with replication stress. To our knowledge, this is the first report of high ATM-Chk2 kinase activation and its linkage to replication defects in a BS model.  相似文献   

13.
Grekhova  A. K.  Pustovalova  M. V.  Eremin  P. S.  Ozerov  I. V.  Maksimova  O. A.  Gordeev  A. V.  Vorobyeva  N. Yu.  Osipov  A. N. 《Biology Bulletin》2019,46(11):1496-1502
Biology Bulletin - Abstract—Studies of the changes in the number of γH2AX foci (a DNA double-strand break protein-marker), and Rad51 foci (a key homologous recombination protein) were...  相似文献   

14.
Mediator of DNA damage checkpoint protein-1 (MDC1) is a recently identified nuclear protein that participates in DNA-damage sensing and signaling. Here we report that knockdown of MDC1 by RNA interference results in cellular hypersensitivity to the DNA cross-linking agent mitomycin C and ionizing radiation and in impaired homology-mediated repair of double-strand breaks in DNA. MDC1 forms a complex with Rad51 through a direct interaction with the forkhead-associated domain of MDC1, not the BRCA1 C-terminal domain. Depletion of MDC1 results in impaired formation of Rad51 ionizing radiation-induced foci, reduced amounts of nuclear and chromatin-bound Rad51, and a corresponding increase in Rad51 protein degradation. Together, our findings suggest that MDC1 functions in Rad51-mediated homologous recombination by retaining Rad51 in chromatin.  相似文献   

15.
Topoisomerase II (Top2) is a nuclear enzyme involved in several metabolic processes of DNA. Chemotherapy agents that poison Top2 are known to induce persistent protein-mediated DNA double strand breaks (DSB). In this report, by using knock down experiments, we demonstrated that Top2α was largely responsible for the induction of γH2AX and cytotoxicity by the Top2 poisons idarubicin and etoposide in normal human cells. As DSB resulting from Top2 poisons-mediated damage may be repaired by non-homologous end joining (NHEJ) or homologous recombination (HR), we aimed to analyze both DNA repair pathways. We found that DNA-PKcs was rapidly activated in human cells, as evidenced by autophosphorylation at serine 2056, following Top2-mediated DNA damage. The chemical inhibition of DNA-PKcs by wortmannin and vanillin resulted in an increased accumulation of DNA DSB, as evaluated by the comet assay. This was supported by a hypersensitive phenotype to Top2 poisons of Ku80- and DNA-PKcs- defective Chinese hamster cell lines. We also showed that Rad51 protein levels, Rad51 foci formation and sister chromatid exchanges were increased in human cells following Top2-mediated DNA damage. In support, BRCA2- and Rad51C- defective Chinese hamster cells displayed hypersensitivity to Top2 poisons. The analysis by immunofluorescence of the DNA DSB repair response in synchronized human cell cultures revealed activation of DNA-PKcs throughout the cell cycle and Rad51 foci formation in S and late S/G2 cells. Additionally, we found an increase of DNA-PKcs-mediated residual repair events, but not Rad51 residual foci, into micronucleated and apoptotic cells. Therefore, we conclude that in human cells both NHEJ and HR are required, with cell cycle stage specificity, for the repair of Top2-mediated reversible DNA damage. Moreover, NHEJ-mediated residual repair events are more frequently associated to irreversibly damaged cells.  相似文献   

16.
Chloroethylnitrosureas (CNUs) are powerful DNA-reactive alkylating agents used in cancer therapy. Here, we analyzed cyto- and genotoxicity of nimustine (ACNU), a representative of CNUs, in synchronized cells and in cells deficient in repair proteins involved in homologous recombination (HR) or nonhomologous end-joining (NHEJ). We show that HR mutants are extremely sensitive to ACNU, as measured by colony formation, induction of apoptosis and chromosomal aberrations. The NHEJ mutants differed in their sensitivity, with Ku80 mutants being moderately sensitive and DNA-PKcs mutated cells being resistant. HR mutated cells displayed a sustained high level of γH2AX foci and displayed co-staining with Rad51 and 53BP1, indicating DNA double-strand breaks (DSB) to be formed. Using synchronized cells, we analyzed whether DSB formation after ACNU treatment was replication-dependent. We show that γH2AX foci were not induced in G1 but increased significantly in S phase and remained at a high level in G2, where a fraction of cells became arrested and underwent, with a delay of > 12 h, cell death by apoptosis and necrosis. Rad51, ATM, MDC-1 and RPA-2 foci were also formed and shown to co-localize with γH2AX foci induced in S phase, indicating that the DNA damage response was activated. All effects observed were abrogated by MGMT, which repairs O6-chloroethylguanine that is converted into DNA cross-links. We deduce that the major genotoxic and killing lesion induced by CNUs are O6-chloroethylguanine-triggered cross-links, which give rise to DSBs in the treatment cell cycle, and that HR, but not NHEJ, is the major route of protection against this group of anticancer drugs. Base excision repair had no significant impact on ACNU-induced cytotoxicity.  相似文献   

17.
Rad51C is a central component of two complexes formed by five Rad51 paralogs in vertebrates. These complexes are involved in repairing DNA double-strand breaks through homologous recombination. Despite accumulating evidence suggesting that the paralogs may prevent aneuploidy by controlling centrosome integrity, Rad51C's role in maintaining chromosome stability remains unclear. Here we demonstrate that Rad51C deficiency leads to both centrosome aberrations in an ATR-Chk1-dependent manner and increased aneuploidy in human cells. While it was reported that Rad51C deficiency did not cause centrosome aberrations in interphase in hamster cells, such aberrations were observed in interphase in HCT116 cells with Rad51C dysfunction. Caffeine treatment and down-regulation of ATR, but not that of ATM, reduced the frequency of centrosome aberrations in the mutant cells. Silencing of Rad51C by RNA interference in HT1080 cells resulted in similar aberrations. Treatment with a Chk1 inhibitor and silencing of Chk1 also reduced the frequency in HCT116 mutants. Accumulation of Chk1 at the centrosome and nuclear foci of γH2AX were increased in the mutants. Moreover, the mutant cells had a higher frequency of aneuploidy. These findings indicate that the ATR-Chk1 pathway plays a role in increased centrosome aberrations induced by Rad51C dysfunction.  相似文献   

18.
DNA polymerase (Pol) β null mouse embryonic fibroblasts provide a useful cell system to investigate the effects of alterations in base excision repair (BER) on genome stability. These cells are characterized by hypersensitivity to the cytotoxic effects of methyl methanesulfonate (MMS) and by decreased repair of the MMS-induced DNA single strand breaks (SSB). Here, we show that, in the absence of Pol β, SSB accumulate in G1 phase cells, accompanied by the formation of proliferating cell nuclear antigen foci in the nuclei. When replicating Pol β null cells are treated with MMS, a rapid phosphorylation of histone H2AX is detected in the nuclei of S phase cells, indicating that double strand breaks (DSB) are formed in response to unrepaired SSB. This is followed by relocalization within the nuclei of Rad51 protein, which is essential for homologous recombination (HR). These findings are compatible with a model where, in mammalian cells, unrepaired SSB produced during BER are substrates for the HR pathway via DSB formation. This is an example of a coordinated effort of two different repair pathways, BER and HR, to protect mammalian cells from alkylation-induced cytotoxicity.  相似文献   

19.
It has been shown that the key homologous recombination protein Rad51accumulates in DNA damage‐induced nuclear foci that are attached to the nuclear matrix. In the present communication we attempted to find whether Rad51 contains a functional domain responsible for nuclear matrix binding. By alignments of the sequences encoding nuclear matrix targeting signals of human nuclear matrix binding proteins with the whole length human Rad51sequence a putative nuclear matrix targeting signal was identified. To prove that it is responsible for the nuclear matrix association of Rad51 18 base pairs encoding a cluster of hydrophobic amino acids in the human Rad51 Flag‐tagged gene were deleted. The formation of damage‐induced Rad51 foci and their association with the nuclear matrix were monitored in HeLa cells transfected with the wild‐type and the mutated Rad51gene after treatment with mitomycin C. The results showed that while the wild‐type protein formed Rad51 foci attached to the nuclear matrix, the mutated Rad51 failed to form DNA damage‐induced nuclear foci. The loss of foci formation activity of the mutated protein was not due to impaired ability to bind double‐stranded DNA in an ATP‐dependant way in vitro and to bind chromatin in vivo. These data suggest that the assembly of Rad51 into nuclear foci is assisted by association with the nuclear matrix, which may support the spatial organization of the process of repair by homologous recombination. J. Cell. Physiol. 219: 202–208, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
Control of sister chromatid recombination by histone H2AX   总被引:1,自引:0,他引:1  
Histone H2AX has a role in suppressing genomic instability and cancer. However, the mechanisms by which it performs these functions are poorly understood. After DNA breakage, H2AX is phosphorylated on serine 139 in chromatin near the break. We show here that H2AX serine 139 enforces efficient homologous recombinational repair of a chromosomal double-strand break (DSB) by using the sister chromatid as a template. BRCA1, Rad51, and CHK2 contribute to recombinational repair, in part independently of H2AX. H2AX(-/-) cells show increased use of single-strand annealing, an error-prone deletional mechanism of DSB repair. Therefore, the chromatin response around a chromosomal DSB, in which H2AX serine 139 phosphorylation plays a central role, "shapes" the repair process in favor of potentially error-free interchromatid homologous recombination at the expense of error-prone repair. H2AX phosphorylation may help set up a favorable disposition between sister chromatids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号