首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Iron uptake is essential for Gram-negative bacteria including cyanobacteria. In cyanobacteria, however, the iron demand is higher than in proteobacteria due to the function of iron as a cofactor in photosynthesis and nitrogen fixation, but our understanding of iron uptake by cyanobacteria stands behind the knowledge in proteobacteria. Here, two genes involved in this process in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 were identified. ORF all4025 encodes SchE, a putative cytoplasmic membrane-localized transporter involved in TolC-dependent siderophore secretion. Inactivation of schE resulted in an enhanced sensitivity to high metal concentrations and decreased secretion of hydroxamate-type siderophores. ORF all4026 encodes a predicted outer membrane-localized TonB-dependent iron transporter, IacT. Inactivation of iacT resulted in decreased sensitivity to elevated iron and copper levels. Expression of iacT from the artificial trc promoter (Ptrc) resulted in sensitization against tested metals. Further analysis showed that iron and copper effects are synergistic because a decreased supply of iron induced a significant decrease of copper levels in the iacT insertion mutant but an increase of those levels in the strain carrying Ptrc-iacT. Our results unravel a link between iron and copper homeostasis in Anabaena sp. PCC 7120.  相似文献   

5.
Anabaena sp. strain 6411, which produces the dihydroxamate siderophore schizokinen to facilitate iron uptake, is also capable of using the related siderophore aerobactin. The two siderophores compete for the same iron transport system, but there is a markedly higher affinity for ferric schizokinen than for ferric aerobactin. The trihydroxamate siderophore ferrioxamine B is far less effective as an iron donor in this organism. Anabaena sp. strain 7120 appears to be closely related to strain 6411. It synthesizes schizokinen as its major siderophore and shows rates of iron uptake from ferric schizokinen, ferric aerobactin, and ferrioxamine B which are similar to those observed with strain 6411. Anabaena cylindrica Lemm. 7122 and 1611, on the other hand, differ from strain 6411. In contrast to schizokinen, the hydroxamate which they produce in response to iron starvation cannot be extracted with water from the organic layer and does not support the growth of the siderophore auxotroph Arthrobacter flavescens JG-9. Strain 7122 can use its endogenous siderophore or schizokinen to promote iron uptake, but at 50-fold-lower rates than are observed with Anabaena sp. strain 6411 or 7120.  相似文献   

6.
Iron transport systems of Serratia marcescens.   总被引:2,自引:0,他引:2       下载免费PDF全文
A Angerer  B Klupp    V Braun 《Journal of bacteriology》1992,174(4):1378-1387
Serratia marcescens W225 expresses an unconventional iron(III) transport system. Uptake of Fe3+ occurs in the absence of an iron(III)-solubilizing siderophore, of an outer membrane receptor protein, and of the TonB and ExbBD proteins involved in outer membrane transport. The three SfuABC proteins found to catalyze iron(III) transport exhibit the typical features of periplasmic binding-protein-dependent systems for transport across the cytoplasmic membrane. In support of these conclusions, the periplasmic SfuA protein bound iron chloride and iron citrate but not ferrichrome, as shown by protection experiments against degradation by added V8 protease. The cloned sfuABC genes conferred upon an Escherichia coli aroB mutant unable to synthesize its own enterochelin siderophore the ability to grow under iron-limiting conditions (in the presence of 0.2 mM 2.2'-dipyridyl). Under extreme iron deficiency (0.4 mM 2.2'-dipyridyl), however, the entry rate of iron across the outer membrane was no longer sufficient for growth. Citrate had to be added in order for iron(III) to be translocated as an iron citrate complex in a FecA- and TonB-dependent manner through the outer membrane and via SfuABC across the cytoplasmic membrane. FecA- and TonB-dependent iron transport across the outer membrane could be clearly correlated with a very low concentration of iron in the medium. Expression of the sfuABC genes in E. coli was controlled by the Fur iron repressor gene. S. marcescens W225 was able to synthesize enterochelin and take up iron(III) enterochelin. It contained an iron(III) aerobactin transport system but lacked aerobactin synthesis. This strain was able to utilize the hydroxamate siderophores ferrichrome, coprogen, ferrioxamine B, rhodotorulic acid, and schizokinen as sole iron sources and grew on iron citrate as well. In contrast to E. coli K-12, S. marcescens could utilize heme. DNA fragments of the E. coli fhuA, iut, exbB, and fur genes hybridized with chromosomal S. marcescens DNA fragments, whereas no hybridization was obtained between S. marcescens chromosomal DNA and E. coli fecA, fhuE, and tonB gene fragments. The presence of multiple iron transport systems was also indicated by the increased synthesis of at least five outer membrane proteins (in the molecular weight range of 72,000 to 87,000) after growth in low-iron media. Serratia liquefaciens and Serratia ficaria produced aerobactin, showing that this siderophore also occurs in the genus Serratia.  相似文献   

7.
Zha S  Xu X  Hu H 《FEMS microbiology letters》2012,334(2):135-142
A Nostoc sp. PCC 7120 iron bioreporter containing iron-regulated schizokinen transporter gene alr0397 promoter fused to the luxAB genes was examined to optimize its response to bioavailable iron. Dose-response relationships between luciferase activity and free ferric ion (Fe(3+) ) concentrations pFe (-lg [Fe(3+) ]) were generated by measuring luciferase activities of the bioreporter in trace metal-buffered Fraquil medium with various incubation times. The results were best demonstrated by sigmoidal curves (pFe 18.8-21.7, Fe(3+) =?10(-18.8) -10(-21.7) M) with the linear range extending from pFe 19.6-21.5 (Fe(3+) =?10(-19.6) -10(-21.5) M) after a 12-h incubation time. Optimal conditions for the use of this bioreporter to sense the iron bioavailability were determined to be: a 12-h exposure time, initial cell density of OD(730?nm) =?0.06, high nitrate (100?μM), high phosphate (10?μM), moderate Co(2+) (0.1-22.5?nM), Zn(2+) (0.16-12?nM), Cu(2+) (0.04-50?nM), and wide range of Mn(2+) concentration (0.92-2300?nM). The applicability of using this iron bioreporter to assess iron availability in the natural environment has been tested using water samples from eutrophic Taihu, Donghu, and Chaohu lakes. It is indicated that the bioreporter is a useful tool to assess bioavailable iron in various water quality samples, especially in eutrophic lakes with high bioavailable iron.  相似文献   

8.
9.
Heterocyst-forming cyanobacteria grow as chains of cells (known as trichomes or filaments) that can be hundreds of cells long. The filament consists of individual cells surrounded by a cytoplasmic membrane and peptidoglycan layers. The cells, however, share a continuous outer membrane, and septal proteins, such as SepJ, are important for cell-cell contact and filament formation. Here, we addressed a possible role of cell envelope components in filamentation, the process of producing and maintaining filaments, in the model cyanobacterium Anabaena sp. strain PCC 7120. We studied filament length and the response of the filaments to mechanical fragmentation in a number of strains with mutations in genes encoding cell envelope components. Previously published peptidoglycan- and outer membrane-related gene mutants and strains with mutations in two genes (all5045 and alr0718) encoding class B penicillin-binding proteins isolated in this work were used. Our results show that filament length is affected in most cell envelope mutants, but the filaments of alr5045 and alr2270 gene mutants were particularly fragmented. All5045 is a dd-transpeptidase involved in peptidoglycan elongation during cell growth, and Alr2270 is an enzyme involved in the biosynthesis of lipid A, a key component of lipopolysaccharide. These results indicate that both components of the cell envelope, the murein sacculus and the outer membrane, influence filamentation. As deduced from the filament fragmentation phenotypes of their mutants, however, none of these elements is as important for filamentation as the septal protein SepJ.  相似文献   

10.
Xu WL  Jeanjean R  Liu YD  Zhang CC 《FEBS letters》2003,553(1-2):179-182
In cyanobacteria, the isiA gene is required for cell adaptation to oxidative damage caused by the absence of iron. We show here that a putative Ser/Thr kinase gene, pkn22 (alr2052), is activated by iron deficiency and oxidative damage in Anabaena sp. PCC 7120. A pkn22 insertion mutant is unable to grow when iron is limiting. pkn22 regulates the expression of isiA (encoding CP43'), but not of isiB (encoding flavodoxin) and psbC (CP43). Fluorescence measurement at 77 K reveals the absence of the typical signature of CP43' associated with photosystem I in the mutant under iron-limiting conditions. We propose that Pkn22 is required for the function of isiA/CP43' and constitutes a regulatory element necessary for stress response.  相似文献   

11.
12.
The TolC-like protein HgdD of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 is part of multiple three-component “AB-D” systems spanning the inner and outer membranes and is involved in secretion of various compounds, including lipids, metabolites, antibiotics, and proteins. Several components of HgdD-dependent tripartite transport systems have been identified, but the diversity of inner membrane energizing systems is still unknown. Here we identified six putative resistance-nodulation-cell division (RND) type factors. Four of them are expressed during late exponential and stationary growth phase under normal growth conditions, whereas the other two are induced upon incubation with erythromycin or ethidium bromide. The constitutively expressed RND component Alr4267 has an atypical predicted topology, and a mutant strain (I-alr4267) shows a reduction in the content of monogalactosyldiacylglycerol as well as an altered filament shape. An insertion mutant of the ethidium bromide-induced all7631 did not show any significant phenotypic alteration under the conditions tested. Mutants of the constitutively expressed all3143 and alr1656 exhibited a Fox phenotype. The phenotype of the insertion mutant I-all3143 parallels that of the I-hgdD mutant with respect to antibiotic sensitivity, lipid profile, and ethidium efflux. In addition, expression of the RND genes all3143 and all3144 partially complements the capability of Escherichia coli ΔacrAB to transport ethidium. We postulate that the RND transporter All3143 and the predicted membrane fusion protein All3144, as homologs of E. coli AcrB and AcrA, respectively, are major players for antibiotic resistance in Anabaena sp. PCC 7120.  相似文献   

13.
14.
鱼腥藻PCC 7120 中的alr2581 基因编码的蛋白质在缺铁胁迫时显著上调。将该基因的启动子Palr2581和费氏弧菌的luxAB 基因融合, 通过同源单交换, 整合到鱼腥藻PCC 7120 的基因组上, 构建了可以感知环境中铁的生物报告体Palr2581-luxAB。该藻株在不含铁的BG11 中培养时, 启动子Palr2581 的转录活性增强, LuxAB酶活显著升高。通过测定Palr2581-luxAB 藻株在不同铁浓度Fraquil 培养基中的LuxAB 酶活, 得到了铁浓度pFe(-lgFe3+)与 LuxAB 酶活的剂量反应曲线。结果显示, 12h 时, LuxAB 酶活随培养基中Fe3+浓度增加呈S形递减关系, 其中在pFe=20.7—21.2 范围内有很好的线性关系。根据这一特性, 我们利用Palr2581-luxAB 作为铁的生物报告体, 测定了武汉市东湖水体中可利用的铁浓度为10-20.56 mol/L。研究显示, 通过这一方法可以较方便地监测各种淡水中可利用的铁浓度。    相似文献   

15.
The multicellular Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can fix N2 in differentiated cells called heterocysts, which exchange nutritional and regulatory compounds with the neighbour photosynthetic vegetative cells. The outer membrane of this bacterium is continuous along the filament defining a continuous periplasmic space. The Anabaena alr0075 , alr2269 and alr4893 gene products were characterized as Omp85-like proteins, which are generally involved in outer membrane protein biogenesis. Open reading frame alr2269 is the first gene of an operon that also carries genes for lipopolysaccharide lipid A biosynthesis including alr2270 (an lpxC homologue). Strains carrying inactivating alr2269 or alr2270 constructs showed enhanced sensitivity to erythromycin, SDS, lysozyme and proteinase K suggesting that they produce an outer membrane with increased permeability. These strains further exhibited increased uptake of sucrose, glutamate and, to a lesser extent, a few other amino acids. Increased uptake of the same metabolites was obtained by mechanical fragmentation of wild-type Anabaena filaments. These results document that the outer membrane is a permeability barrier for metabolites such as sucrose and glutamate, which are subjected to intercellular exchange in the diazotrophic filament of heterocyst-forming cyanobacteria.  相似文献   

16.
Growth of Anabaena sp. strain 7120 (in the absence of chelators or added iron) was inhibited by the addition of 2.1 to 6.5 microM copper and was abolished by copper concentration of 10 microM or higher. When the copper was chelated to schizokinen (the siderophore produced by this organism in response to iron starvation), the toxic effects were eliminated. Analysis of culture filtrates showed that the cupric schizokinen remains in the medium, thereby lowering the amount of copper taken up by the cells. Although this organism actively transports ferric schizokinen, it apparently does not recognize the cupric complex. Thus, Anabaena sp. is protected from copper toxicity under conditions in which siderophore is being produced. For cells grown in low iron, the accumulation of extracellular schizokinen was observed to parallel cell growth and continue well into stationary phase. The actual iron status of the organism was monitored by using iron uptake velocity as an assay. Cultures grown on 0.1 microM added iron were found to be severely iron limited upon reaching stationary phase, thus explaining the continued production of schizokinen. These data show that the siderophore system in Anabaena spp. has developed primarily as a response to iron starvation and that additional functions such as alleviation of copper toxicity or allelopathic inhibition of other algal species are merely secondary benefits.  相似文献   

17.
We have sequenced a region from the pgm locus of Yersinia pestis KIM6+ that confers sensitivity to the bacteriocin pesticin to certain strains of Escherichia coli and Y. pestis. The Y. pestis sequence is 98% identical to the pesticin receptor from Yersinia enterocolitica and is homologous to other TonB-dependent outer membrane proteins. Y. pestis strains with an in-frame deletion in the pesticin receptor gene (psn) were pesticin resistant and no longer expressed a group of iron-regulated outer membrane proteins, IrpB to IrpD. In addition, this strain as well as a Y. pestis strain with a mutation constructed in the gene (irp2) encoding the 190-kDa iron-regulated protein HMWP2 could not grow at 37 degrees C in a defined, iron-deficient medium. However, the irp2 mutant but not the psn mutant could be cross-fed by supernatants from various Yersinia cultures grown under iron-deficient conditions. An analysis of the proteins synthesized by the irp2 mutant suggests that HMWP2 may be indirectly required for maximal expression of the pesticin receptor. HMWP2 likely participates in synthesis of a siderophore which may induce expression of the receptor for pesticin and the siderophore.  相似文献   

18.
Growth of Anabaena sp. strain 7120 (in the absence of chelators or added iron) was inhibited by the addition of 2.1 to 6.5 microM copper and was abolished by copper concentration of 10 microM or higher. When the copper was chelated to schizokinen (the siderophore produced by this organism in response to iron starvation), the toxic effects were eliminated. Analysis of culture filtrates showed that the cupric schizokinen remains in the medium, thereby lowering the amount of copper taken up by the cells. Although this organism actively transports ferric schizokinen, it apparently does not recognize the cupric complex. Thus, Anabaena sp. is protected from copper toxicity under conditions in which siderophore is being produced. For cells grown in low iron, the accumulation of extracellular schizokinen was observed to parallel cell growth and continue well into stationary phase. The actual iron status of the organism was monitored by using iron uptake velocity as an assay. Cultures grown on 0.1 microM added iron were found to be severely iron limited upon reaching stationary phase, thus explaining the continued production of schizokinen. These data show that the siderophore system in Anabaena spp. has developed primarily as a response to iron starvation and that additional functions such as alleviation of copper toxicity or allelopathic inhibition of other algal species are merely secondary benefits.  相似文献   

19.
In Pseudomonas sp. strain M114, the outer membrane receptor for ferric pseudobactin M114 was shown to transport ferric pseudobactins B10 and A225, in addition to its own. The gene encoding this receptor, which was previously cloned on pCUP3, was localized by Tn5 mutagenesis to a region comprising >1.6 kb of M114 DNA. A mutant (strain M114R1) lacking this receptor was then created by a marker exchange technique. Characterization of this mutant by using purified pseudobactin M114 in radiolabeled ferric iron uptake studies confirmed that it was completely unable to utilize this siderophore for acquisition of iron. In addition, it lacked an outer membrane protein band of 89 kDa when subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. As a result, growth of the mutant was severely restricted under low-iron conditions. However, this phenotype was reversed in the presence of another fluorescent siderophore (pseudobactin MT3A) from Pseudomonas sp. strain MT3A, suggesting the presence of a second receptor in strain M114. Furthermore, wild-type Pseudomonas sp. strain B24 was not able to utilize ferric pseudobactin MT3A, and this phenotype was not reversed upon expression of the M114 receptor encoded on pCUP3. However, a cosmid clone (pMS1047) that enabled strain B24 to utilize ferric pseudobactin MT3A was isolated from an M114 gene bank. Radiolabel transport assays with purified pseudobactin MT3A confirmed this event. Plasmid pMS1047 was shown to encode an outer membrane protein of 81 kDa in strain B24 under iron-limiting conditions; this protein corresponds to a similar protein in strain M114.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号