首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M102AD is the new designation for a Streptococcus mutans phage described in 1993 as phage M102. This change was necessitated by the genome analysis of another S. mutans phage named M102, which revealed differences from the genome sequence reported here. Additional host range analyses confirmed that S. mutans phage M102AD infects only a few serotype c strains. Phage M102AD adsorbed very slowly to its host, and it cannot adsorb to serotype e and f strains of S. mutans. M102AD adsorption was blocked by c-specific antiserum. Phage M102AD also adsorbed equally well to heat-treated and trypsin-treated cells, suggesting carbohydrate receptors. Saliva and polysaccharide production did not inhibit plaque formation. The genome of this siphophage consisted of a linear, double-stranded, 30,664-bp DNA molecule, with a GC content of 39.6%. Analysis of the genome extremities indicated the presence of a 3'-overhang cos site that was 11 nucleotides long. Bioinformatic analyses identified 40 open reading frames, all in the same orientation. No lysogeny-related genes were found, indicating that phage M102AD is strictly virulent. No obvious virulence factor gene candidates were found. Twelve proteins were identified in the virion structure by mass spectrometry. Comparative genomic analysis revealed a close relationship between S. mutans phages M102AD and M102 as well as with Streptococcus thermophilus phages. This study also highlights the importance of conducting research with biological materials obtained from recognized microbial collections.  相似文献   

2.
Since the food-borne pathogen Listeria monocytogenes is common in dairy farm environments, it is likely that phages infecting this bacterium (“listeriaphages”) are abundant on dairy farms. To better understand the ecology and diversity of listeriaphages on dairy farms and to develop a diverse phage collection for further studies, silage samples collected on two dairy farms were screened for L. monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing up to >1.5 × 104 PFU/g. Host range characterization of the 114 phage isolates obtained, with a reference set of 13 L. monocytogenes strains representing the nine major serotypes and four lineages, revealed considerable host range diversity; phage isolates were classified into nine lysis groups. While one serotype 3c strain was not lysed by any phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed a narrow host range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range (lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from approximately 26 to 140 kb. The extensive host range and genomic diversity of phages observed here suggest an important role of phages in the ecology of L. monocytogenes on dairy farms. In addition, the phage collection developed here has the potential to facilitate further development of phage-based biocontrol strategies (e.g., in silage) and other phage-based tools.  相似文献   

3.
Although fiveBacteroides fragilis bacteriophages isolated over a six-year period in Nebraska and Virginia had similar physical characteristics (morphology, temperature inactivation, and sensitivity to organic solvents and antisera), there were some statistically significant differences between the phages. In addition, restriction endonuclease analysis revealed that three of the five DNAs were not identical. However, the DNAs of the phages were closely related based on DNA-DNA hybridization, percent homologies, and possession of homologous regions of DNA. It appears that the five phages are strains of the same species of phage, although each phage has a unique host range spectrum.  相似文献   

4.
The persistence and interaction between newly isolated strains ofPseudomonas aeruginosa and resident bacteriophages indigenous to a freshwater environment was monitored over 45 days in lake water microcosms. The interaction between susceptible and resistant bacteria with pure phage (UT1) particles or a mixed phage population (M1) was investigated by following temporal changes in host density, phage-to-bacteria ratio (PBR), and the appearance of apparent prophage carriers within the host population. Decay rates of the phage (UT1) ranged from 0.054 hour–1 in natural water to 0.027 hour–1 in filtered lake water. About 45% of sensitive bacteria incubated with phase UT1 were pseudolysogenic within 12 hours of incubation in natural lake water. This process was delayed until 72 hours in the steile lake water control, suggesting that host-phage interaction is promoted in the presence of a viable natural microbial community. Phage UT1 appeared to stabilize the density of host bacteria in lake water at a level of 104 colony-forming units (cfu) ml–1. Bacterial coexistence with the mixed phage (M1) population resulted in an oscillating equilibrium with the PBR stabilizing at about 3. The presence of extraneous homoimmune phages appeared to be detrimental to the stability of the pseudolysogens, which were maintained at a lower population density than prophage-free cells in lake water containing the mixed phage (M1) population.  相似文献   

5.
Four phages infectious to Mesorhizobium strains were identified in soil samples taken from local Robinia pseudoacacia stands. Based on their polyhedral heads and short noncontractile tails, three of the phages, Mlo30, Mam12, and Mam20, were assigned to group C of Bradley’s classification, the Podoviridae family, while phage Mlo1, with its elongated hexagonal head and a long flexible tail represented subgroup B2 bacteriophages, the Siphoviridae family. The phages were homogeneous in respect of their virulence, as they only lysed Mesorhizobium strains, but did not affect strains of Rhizobium or Bradyrhizobium. On the basis of one-step growth experiments, the average virus yield was calculated as approximately 10–25 phage particles for phages Mlo30, Mam12 and Mam20, and as many as 100–120 for phage Mlo1. The rate of phage adsorption to heat-treated cells showed differences in the nature of their receptors, which seemed to be thermal sensitive, thermal resistant, or a combination of the two. Only the receptor for phage Mlo30 was likely to be an LPS molecule, which was supported by a neutralization test. The smooth LPS with O-antigenic chains of the phage-sensitive M. loti strain completely reduced the bactericidal activity of virions at a concentration of 1 μg/ml. The molecular weights of phage DNAs estimated from restriction endonuclease cleavage patterns were in the range from ~39 kb for group C phages to ~80 kb for B2.  相似文献   

6.
Six bacteriophages with an elongated head and a short, noncontractile tail were compared by DNA-DNA hybridization, seroneutralization kinetics, mol% G+C and molecular weight of DNA, and host range. Three phage species could be identified. Phage species 1 containedEnterobacter sakazakii phage C2,Erwinia herbicola phages E3 and E16P, andSalmonella newport phage 7–11. These phages had a rather wide host range (4 to 13 bacterial species). DNA relatedness among species 1 phages was above 75% relative binding ratio (S1 nuclease method, 60°C) when labeled DNA from phage C2 was used, and above 41% when labeled DNA from phage E3 was used. Molecular weight of DNA was about 58×106 (C2) to 67 ×106 (E3). The mol% G+C of DNA was 43–45. Anti-C2 serum that neutralizes all phages of species 1 does not neutralize phages of the other two species. Species 2 contains only coliphage Esc-7-11, whose host range was only oneEscherichia coli strain out of 188 strains of Enterobacteriaceae studied; it was unrelated to the other two species by seroneutralization and DNA hybridization. DNA from phage Esc-7-11 had a base composition of 43 mol% G+C and a molecular weight of about 45×106. Species 3 contains onlyProteus mirabilis phage 13/3a. Its host range was limited to swarmingProteus species. Species 3 was unrelated to the other two species by seroneutralization and DNA hybridization. DNA from phage 13/3a had a base composition of 35 mol% G+C and molecular weight of about 53×106. It is proposed that phage species be defined as phage nucleic acid hybridization groups.  相似文献   

7.
Nontoxigenic strains of Clostridium botulinum types C and D are converted to toxigenic strains by infection with specific Tox+ bacteriophages. The nucleic acids were extracted from five converting phages, c-st, c-468, c-203, c-d6f, and d-1873, and one nonconverting phage, c-n71, and treated with nucleases. The nucleic acids isolated were not digested by RNase A, but were digested by DNase I and exonuclease III, indicating that they were double-stranded DNA. On the basis of the restriction endonuclease digestion patterns on 0.8% agarose gel electrophoresis, the length of c-st, c-n71, c-468, and c-d6f phage DNAs was estimated to be about 110 kilobase pairs and that of c-203 and d-1873 was about 150 kilobase pairs. The digestion patterns of c-st, c-468, and c-n71 phage DNAs by PstI and HindIII were very similar. High homology was observed in the dot hybridization test. For other phages and nucleases, a good similarity was not observed. Only a little similarity was observed between c-203 and c-d6f phages. The existence of the structural genes for the toxin in both c-st and c-n71 phages was confirmed by the hybridization test with these phage DNAs and the oligonucleotide probe which represented the DNA sequence predicted for the N-terminal amino acids (2 to 17) of C. botulinum type C toxin. The loss of the converting ability of c-n71 phage may be caused not by the deletion of the tox+ gene but rather by the base mutation in c-st phage DNA.  相似文献   

8.
Characteristics of bacteriophages for Micromonospora purpurea.   总被引:1,自引:0,他引:1       下载免费PDF全文
Chemical and physical stabilities of bacteriophages øUW 21 and øUW 51 infecting Micromonospora purpurea ATCC 15835 were examined. Both phages were stable over the pH range of 5 to 8 and to heating at temperatures up to 50 degrees C and especially stable in buffer containing magnesium ion. Exposure to 1 M Ca(NO3)2 inactivated both phages, and phage øUW 51 was also susceptible to 1 M CaCl2, 0.1 M tris(hydroxymethyl)aminomethane, and 0.3% H2O2. Phage plating efficiency was highest on the cultures at logarithmic phase and sometimes much influenced by host growth. Phage øUW 51 has a latent period of 2 h at 34 degrees C and a burst size between 35 and 40. The latent period for phage øUW 21 is about 12 h, and the burst size is smaller than 30.  相似文献   

9.
Nontoxigenic strains of Clostridium botulinum types C and D are converted to toxigenic strains by infection with specific Tox+ bacteriophages. The nucleic acids were extracted from five converting phages, c-st, c-468, c-203, c-d6f, and d-1873, and one nonconverting phage, c-n71, and treated with nucleases. The nucleic acids isolated were not digested by RNase A, but were digested by DNase I and exonuclease III, indicating that they were double-stranded DNA. On the basis of the restriction endonuclease digestion patterns on 0.8% agarose gel electrophoresis, the length of c-st, c-n71, c-468, and c-d6f phage DNAs was estimated to be about 110 kilobase pairs and that of c-203 and d-1873 was about 150 kilobase pairs. The digestion patterns of c-st, c-468, and c-n71 phage DNAs by PstI and HindIII were very similar. High homology was observed in the dot hybridization test. For other phages and nucleases, a good similarity was not observed. Only a little similarity was observed between c-203 and c-d6f phages. The existence of the structural genes for the toxin in both c-st and c-n71 phages was confirmed by the hybridization test with these phage DNAs and the oligonucleotide probe which represented the DNA sequence predicted for the N-terminal amino acids (2 to 17) of C. botulinum type C toxin. The loss of the converting ability of c-n71 phage may be caused not by the deletion of the tox+ gene but rather by the base mutation in c-st phage DNA.  相似文献   

10.
A set of 83 lytic dairy bacteriophages (phages) infecting flavor-producing mesophilic starter strains of the Leuconostoc genus was characterized, and the first in-depth taxonomic scheme was established for this phage group. Phages were obtained from different sources, i.e., from dairy samples originating from 11 German dairies (50 Leuconostoc pseudomesenteroides [Ln. pseudomesenteroides] phages, 4 Ln. mesenteroides phages) and from 3 external phage collections (17 Ln. pseudomesenteroides phages, 12 Ln. mesenteroides phages). All phages belonged to the Siphoviridae family of phages with isometric heads (diameter, 55 nm) and noncontractile tails (length, 140 nm). With the exception of one phage (i.e., phage ΦLN25), all Ln. mesenteroides phages lysed the same host strains and revealed characteristic globular baseplate appendages. Phage ΦLN25, with different Y-shaped appendages, had a unique host range. Apart from two phages (i.e., phages P792 and P793), all Ln. pseudomesenteroides phages shared the same host range and had plain baseplates without distinguishable appendages. They were further characterized by the presence or absence of a collar below the phage head or by unique tails with straight striations. Phages P792 and P793 with characteristic fluffy baseplate appendages could propagate only on other specific hosts. All Ln. mesenteroides and all Ln. pseudomesenteroides phages were members of two (host species-specific) distinct genotypes but shared a limited conserved DNA region specifying their structural genes. A PCR detection system was established and was shown to be reliable for the detection of all Leuconostoc phage types.  相似文献   

11.
Salmonella weltevreden has been found to be one of the commonest Salmonella serotypes isolated from diverse sources in India and has also been isolated in a number of other countries. A phage typing scheme was developed for this serotype using a set of six typing phages. These phages had been selected out of 146 phage strains isolated and purified from stool samples of man, laboratory animals and other animals, sewage and surface water sources, and the lytic mutants of temperate phages from S. weltevreden.The phage typing scheme was applied systematically to type the 946 strains from India isolated during 1958–1974 and 148 strains originating from Australia, Burma, England, Gan Island, Holland, Hong Kong, Malaysia, New Zealand, Papua New Guinea, The Philippines, Thailand, The United States and Vietnam during 1953–1971. The scheme was particularly studied to evaluate its utility in mapping the epidemiologically related strains from various sources.The S. weltevreden strains could be classified into ten phage types. Phage types 2 and 7 were found exclusively amongst Indian strains, type 6 from Vietnam and type 8 from Burma, Thailand and Vietnam. Phage types were found to be stable and consistent with the independent epidemiological data available.  相似文献   

12.

Aims

This study aimed to characterize the impact of lytic and temperate bacteriophages on the genetic and phenotypic diversity of Mannheimia haemolytica from feedlot cattle.

Methods and Results

Strictly lytic phages were not detected from bovine nasopharyngeal (n = 689) or water trough (n = 30) samples, but Myoviridae‐ or Siphoviridae‐like phages were induced from 54 of 72 M. haemolytica strains by mitomycin C, occasionally from the same strain. Phages with similar restriction fragment length polymorphism profiles (RFLP ≥70% relatedness) shared common host serotypes 1 or 2 (< 0·000 1). Likewise, phages with similar RFLP tended to occur in genetically related host bacteria (70–79% similarity). Host range assays showed that seven phages from host serotypes 1, 2 and 6 lysed representative strains of serotypes 1, 2 or 8. The genome of vB_MhM_1152AP from serotype 6 was found to be collinear with P2‐like phage φMhaA1‐PHL101.

Conclusions

Prophages are a significant component of the genome of M. haemolytica and contribute significantly to host diversity. Further characterization of the role of prophage in virulence and persistence of M. haemolytica in cattle could provide insight into approaches to control this potential respiratory pathogen.

Significance and Impact of the Study

This study demonstrated that prophages are widespread within the genome of M. haemolytica isolates and emphasized the challenge of isolating lytic phage as a therapeutic against this pathogen.  相似文献   

13.
Summary Lysogeny was not detected in 10 strains of A. tumefaciens by plating techniques or ultra-violet induction. Fifteen phages were isolated from raw sewage against 13 cultures of A. tumefaciens and purified by single-plaque selections. No phage lysed all of the strains of A. tumefaciens tested; one phage lysed only a single strain; 2 other phages attacked 7 strains. Ten of the 15 phages lysed no more than 3 strains. Three host strains showed identical phage susceptibilities. No relationship was noted between susceptibility to phage and ability of a strain to incite crown galls.Thirteen phages lysed at least 1 of 4 strains of A. radiobacter, but none attacked single strains of A. rubi or A. pseudotsugae. Eleven phages lysed the one strain of A. rhizogenes used. None of the phages had identical host ranges with respect to all the Agrobacterium spp. tested. Similarly none of 5 selected phages attacked any one of 59 strains of bacteria from 12 different genera including 35 strains of rhizobia. Within the limits of this study the phages used were genus-specific.Published with approval of the Director, Wisconsin Agricultural Experiment Station, Madison, Wisconsin, U.S.A. 53706.  相似文献   

14.
The fish pathogen Flavobacterium psychrophilum infects farmed salmonids worldwide, and application of bacteriophages has been suggested for controlling disease outbreaks in aquaculture. Successful application of phages requires detailed knowledge about the variability in phage susceptibility of the host communities. In this study, we analysed the genetic diversity of F. psychrophilum hosts and phages from the Baltic Sea area to identify genetic determinants of phage-host interaction patterns. A host range analysis of 103 phages tested against 177 F. psychrophilum strains (18 231 phage–host interactions) identified nine phage clusters, infecting from 10% to 91% of the strain collection. The core genome-based comparison of 35 F. psychrophilum isolates revealed an extremely low overall genomic diversity (>99.5% similarity). However, a small subset of 16 ORFs, including genes involved in the type IX secretion system (T9SS), gliding motility and hypothetical cell-surface related proteins, exhibited a highly elevated genetic diversity. These specific genetic variations were linked to variability in phage infection patterns obtained from experimental studies, indicating that these genes are key determinants of phage susceptibility. These findings provide novel insights on the molecular mechanisms determining phage susceptibility in F. psychrophilum and emphasizes the importance of phages as drivers of core genomic diversity in this pathogen.  相似文献   

15.
Three Lactobacillus casei bacteriophages, LC-Nu, PL-1, and ?FSW, were compared. Phage LC-Nu, which has not been previously characterized, originated from a local cheese plant in Finland. Phages PL-1 and ?FSW (isolated in Japan) represent the most thoroughly studied L.casei phages so far. All three phages had similar morphotypes, but still had different patterns of structural proteins, as analyzed by SDS-PAGE. The phages differed also in types of genome organization: LC-Nu and PL-1 had cohesive ends in their DNAs, and the DNA of ?FSW was circularly permuted. The initiation site and orientation of packaging of ?FSW DNA were identified. The homologies between the phage genomes were analyzed by Southern hybridization. About one-third of each phage gem me was highly homologous with other phages (homology over 85%), and two-thirds were slightly homologous (homology between 65% and 76%). DNAs from five industrial L. casei strains were also tested for homology with phage LC-Nu DNA. Phage LC-Nu related sequences were present in all the L. casei strains tested.  相似文献   

16.
A new virulent bacteriophage, termed øRsV, was isolated from a local sewage plant on the facultative phototrophic bacterium Rhodobacter sphaeroides DSM 159 as the host organism. Electron microscopic studies revealed that in general morphology phage øRsV resembles the T-even Escherichia coli phages. The host range of phage øRsV was restricted to strains of R. sphaeroides. E. coli strains B and K 12 were not infected. The phage genome was characterized on the basis of thermal denaturation profiles and restriction analyses indicating that it consists of about 160 kb of double-stranded DNA lacking cohesive ends. The G+C content was determined to be 46.8 mol%.  相似文献   

17.
The prevalence and nature of Shiga toxin (Stx)-producing Escherichia coli (STEC) and Stx phage were investigated in 720 swine fecal samples randomly collected from a commercial breeding pig farm in China over a 1-year surveillance period. Eight STEC O157 (1.1%), 33 STEC non-O157 (4.6%), and two stx-negative O157 (0.3%) isolates were identified. Fecal filtrates were screened directly for Stx phages using E. coli K-12 derivative strains MC1061 as indicator, yielding 15 Stx1 and 57 Stx2 phages. One Stx1 and eight Stx2 phages were obtained following norfloxacin induction of the eight field STEC O157 isolates. All Stx1 phages had hexagonal heads with long tails, while Stx2 phages had three different morphologies. Notably, most of field STEC O157 isolates released more free phages and Stx toxin after induction with ciprofloxacin. Furthermore, upon infection with the recombinant phage ΦMin27(Δstx::cat), E. coli laboratory strains produced both lysogenic and lytic phage, whereas two of the eight O157 STEC isolates produced only lysogens. The lysogens from laboratory strains produced infectious particles similar to ΦMin27. Similarly, the lysogens from the STEC O157 isolates released Stx phage too, although free ΦMin27(Δstx::cat) particles were not detected. Collectively, our results reveal that breeding pig farms could be important reservoirs for Stx phages and that residual antibacterial agents may enhance the release of Stx phages and the expression of Stx.  相似文献   

18.
A total of 33 Rhizobium meliloti bacteriophages were studied. Of those, 21 were isolated in northern France from field soil in which Medicago sativa L. was grown. The other 12 phages were obtained by UV light and mitomycin C induction from 46 R. meliloti strains. Rhizobiophages were characterized by their morphology, host range, serological properties, restriction endonuclease patterns, DNA-DNA homologies, and DNA molecular weights. Five morphotypes were observed showing tailed phages with icosahedral heads. The categories of morphotypes included the Myoviridae (11 phages), Siphoviridae (3 morphotypes and 20 phages), and Podoviridae (2 phages). Type NM1 phage (Siphoviridae) is highly unusual because of the presence of transverse bars on the phage tail. Soil phages had broad host ranges, whereas phages isolated from bacterial cultures showed more or less narrow host ranges. Restriction endonuclease patterns and DNA-DNA hybridization experiments showed that the five phage type genomes were unrelated. Molecular weights of phage type DNAs were estimated, and they corresponded to values expected for capsid sizes, except for phage NM8. Type M11S (Siphoviridae) did not correspond to any other described Rhizobium phages and represents a new species.  相似文献   

19.
Two Aeromonas hydrophila bacteriophages, Aeh1 and Aeh2, were isolated from sewage. Both phages showed binal symmetry. The dimensions of A. hydrophila phages Aeh1 and Aeh2 differed from those of the other Aeromonas phages. Also, phage Aeh2 was the largest Aeromonas phage studied to date. Phage Aeh1 formed small, clear plaques, and phage Aeh2 formed turbid plaques with clear centers. Both phages were sensitive to chloroform treatment, being totally inactivated after treatment for 1 h at 60°C at pH 3 and 11. However, the infectivity of Aeh1 phage stocks increased by approximately fivefold after they were treated at pH 10 for 1 h at 22°C. Phages Aeh1 and Aeh2 were serologically unrelated and had latent periods of 39 and 52 min, respectively. The average burst sizes of phages Aeh1 and Aeh2 were 17 and 92 PFU per cell, respectively. Phage Aeh1 infected 13 of 22 A. hydrophila strains tested, whereas phage Aeh2 infected only its original host. Phage Aeh1 infected some A. hydrophila strains only at or below 37°C. Neither phage infected the two A. (Plesiomonas) shigelloides strains used in this study.  相似文献   

20.
Bacteriophage populations in an activated-sludge sewage treatment plant were enumerated. A newly developed assay for quantitation of total phages, employing direct electron microscopic counts, was used in conjunction with the plaque assay. The total concentration of phages was significantly higher in reactor mixed liquor and effluent than in influent sewage, indicating a net production of phages within the reactor. Maximum total phage concentrations in the fluid phase of sewage, activated-sludge mixed liquor, and reactor effluent were 2.2 × 107, 9.5 × 107, and 8.4 × 107/ml, respectively. Conditions were optimized for isolation of predominant heterotrophic aerobic bacteria from sewage and mixed liquor. Blending at ice water temperatures was superior to ultrasound or enzyme treatments for maximum release of viable bacteria from microbial floc. A solidified extract of mixed liquor was superior to standard media for cultivating maximum numbers of heterotrophic bacteria. The highest culture counts for sewage and mixed liquor were 1.4 × 107 and 1.3 × 109/ml, respectively, which represented only 3 and 6.8% of the total microscopic cell counts. Only 3 out of 48 dominant bacterial isolates from either mixed liquor or sewage were hosts for phages present in the system. The sum of phage populations infecting these three hosts accounted for, at best, 3.8% (sewage) and 0.2% (mixed liquor) of the total number of phages present. Generally, specific phage titers were lower in mixed liquor than in sewage, indicating that these hosts were not responsible for the net production of phages in the reactor. This study emphasizes the limitations of the plaque assay for ecological studies of phages, and it suggests that bacteria responsible for phage production in activated-sludge mixed liquor are either minor components of the heterotrophic population, floc-producing strains, or members of other physiological groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号