首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infrared absorption spectra of film specimens of the epidermaland parenchyma cell walls of the third internode of pea stem,before and after protease treatment and after treatment forremoval of lipid materials, pectic substances and hemicellulose,were recorded, and characteristic bands in the spectrum of thewall were assigned. Polarization spectrum measurements of thewall provided evidence indicating that the non-cellulosic polysaccharidematrix as well as cellulose microfibrils has an oriented structurein the wall which changes during extension growth as well asupon mechanical extension of the walls. (Received March 9, 1978; )  相似文献   

2.
F. Liners  P. Van Cutsem 《Protoplasma》1992,170(1-2):10-21
Summary A monoclonal antibody (2 F 4) recognizing a conformational epitope of polygalacturonic acid was used for immunogold localization of pectins in walls of suspension-cultured carrot (D. carota L.) cells at the electron microscopic level. In microcolonies of young or mature cells, polygalacturonic acid was essentially located on the middle lamella material expanded at three-way junctions between cells or lining intercellular spaces but was not found in primary walls. Middle lamellae far from junction zones and intercellular spaces were not recognized. Largely esterified pectic polymers, only detected by the 2 F 4 antibodies after on-grid de-esterification treatment by pectin methyl esterases, were present within all primary cell walls. Golgi bodies and associated vesicles were also labeled by the 2 F 4 antibodies only after de-esterification treatment, which indicates that pectic polymers are synthesized and secreted in a highly esterified form. A decrease of pectin esterification, which results probably from an in situ enzymatic de-esterification of the pectic polymers of the primary walls, was observed in senescent cells. These results are discussed in relation to biochemical analyses showing changes of the methyl ester content of pectins during the cell-wall growth.  相似文献   

3.
Among 16 essential elements of higher plants, Ca2+ and B have been termed as apoplastic elements. This is mainly because of their localization in cell walls, however, it has turned to be highly likely that these two elements significantly contribute to maintain the integrity of cell walls through binding to pectic polysaccharides. Boron in cell walls exclusively forms a complex with rhamnogalacturonan II (RG-II), and the B-RG-II complex is ubiquitous in higher plants. Analysis of the structure of the B-RG-II complex revealed that the complex contains two molecules boric acid, two molecules Ca2+ and two chains of monomeric RG-II. This result indicates that pectic chains are cross-linked covalently with boric acid at their RG-II regions. The complex was reconstitutedin vitro only by mixing monomeric RG-II and boric acid, however, the complex decomposed spontaneously unless Ca2+ was supplemented. Furthermore, the native complex decomposed when it was incubated withtrans-1,2-diaminocyclohexane-N, N, N′, N′-tetraacetic acid (CDTA) which chelates Ca2+. When radish root cell walls were washed with a buffered 1.5% (w/v) sodium dodesyl sulfate (SDS) solution (pH 6.5), 96%, 13% and 6% of Ca2+, B and pectic polysaccharides of the cell walls, respectively, were released and the cell wall swelled twice. Subsequent extraction with 50 mM CDTA (pH 6.5) of the SDS-washed cell walls further released 4%, 80% and 61% of Ca2+, B and pectic polysaccharides, respectively. Pectinase hydrolysis of the SDS-treated cell walls yielded a B-RG-II complex and almost all the remaining Ca2+ was recovered in the complex. This result suggests that cell-wall bound Ca2+ is divided into at least two fractions, one anchors the CDTA-soluble pectic polysaccharides into cell walls together with B, and the other may control the properties of the pectic gel. These studies demonstrate that B functions to retain CDTA-soluble pectic polysaccharides in cell walls through its binding to the RG-II regions in collaboration with Ca2+.  相似文献   

4.
Cell wall material (CWM) was prepared from nine fruit species at two ripening stages (unripe and ripe) and extracted sequentially with 0.05 M trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (CDTA), 0.05 M Na2CO3 and 4 M KOH. Each solubilised fraction and the CWM-residue remaining after 4 M KOH extraction was analysed for non-cellulosic sugar composition. A common pattern of distribution for polyuronide and pectin-associated neutral sugar was observed for all unripe fruit. Most polyuronide was extracted in the CDTA/Na2CO3 fractions while 70–93% of the neutral sugar was located on pectic polysaccharides in the 4 M KOH-soluble and CWM-residue fractions. During ripening, most of the galactose was lost from pectic polysaccharides in the CWM-residue. Partial solubilisation of these polysaccharides was achieved by treating the CWM-residue with endopolygalacturonase. The solubilised polysaccharides were separated into two fractions by ion-exchange chromatography. One of these contained polysaccharides with average molecular weights of 400 kDa or larger and consisted of between 70 and 90% arabinogalactan. The galactosyl residues were 80–90% β-1→4 linked, indicating largely unbranched side-chains. The arabinosyl residues were distributed among terminal, 3-, 5-, 2,5-, and 2,3,5-linked residues, indicating a highly ramified structure. The results are discussed with regard to the relationship between pectin solubilisation and galactose loss and their respective contribution to fruit softening. Received: 28 January 1997 / Accepted: 11 March 1997  相似文献   

5.
The study carried out in this work concerns the pectic polysaccharides of olive cell walls as present in olive pulp and that remained entrapped in the cellulosic residue after sequential extraction of the cell wall material (CWM) with imidazole, carbonate and KOH aqueous solutions. These polymers, obtained after neutralisation and dialysis of an aqueous suspension of the residue (sn-CR fraction), extracted with 4 M KOH, were arabinan-rich pectic polysaccharides. They accounted for 11–19% of the total pectic polysaccharides found in the olive pulp cell walls of fruits collected in two years and in three stages of ripening (green, cherry and black). The analysis by powder X-ray diffraction highlighted the existence, in all sn-CR fractions, of crystalline phases related with the presence of calcium-pectic polysaccharide complexes (CPPC) occurring in an amorphous carbohydrate network. The relative crystallinity of the CPPC varied linearly with the Ca2+/GalA molar ratio until a maximum of 0.57. Size-exclusion chromatography showed that sn-CR fractions possessed a bimodal molecular weight distribution. The lower molecular weight fraction of sn-CR (Mw = 70–135 kDa) was independent on the ripening stage of olive fruit, whereas the higher molecular weight fraction showed values of 1.1, 0.6–0.9 and 0.5–0.7 MDa, respectively, for green, cherry and black olives. Treatment of the sn-CR pectic polysaccharides with a 2 M imidazole solution disrupted the CPPC crystalline network showing the loss of low molecular weight galacturonan-rich material during dialysis (12–14 kDa cut off) and the decrease of molecular weight of the polymers to roughly half. These results allowed to infer the presence of oligogalacturonides held within cell walls by calcium ions and that the pectic polysaccharides of sn-CR fraction occurred in olive pulp cell walls as calcium bridged macrodimers.  相似文献   

6.
Orfila C  Knox JP 《Plant physiology》2000,122(3):775-782
Scanning electron microscopic examination of intact tomato (Lycopersicon esculentum) pericarp and isolated pericarp cell walls revealed pit fields and associated radiating ridges on the inner face of cell walls. In regions of the cell wall away from pit fields, equivalent ridges occurred in parallel arrays. Treatment of isolated cell walls with a calcium chelator resulted in the loss of these ridges, indicating that they contain homogalacturonan-rich pectic polysaccharides. Immunolabeling procedures confirmed that pit fields and associated radiating ridges contained homogalacturonan. Epitopes of the side chains of pectic polysaccharides were not located in the same regions as homogalacturonan and were spatially regulated in relation to pit fields. A (1-->4)-beta-galactan epitope was absent from cell walls in regions of pit fields. A (1-->5)-alpha-arabinan epitope occurred most abundantly at the inner face of cell walls in regions surrounding the pit fields.  相似文献   

7.
Suspension-cultured carrot ( Daucus carota L. cv. Kintoki) cells were grown in calcium (Ca2+)-deficient and normal liquid media. Cell growth was limited by the Ca2+ deficiency. Similar amounts of pectic fractions were extracted from the walls of control and Ca2+-deprived cells, but the fractions from the walls of Ca2+-deprived cells showed a substantial decrease in galacturonic acid content. However, after 15 days of culture, Ca2+-deprived cells released galacturonic acid-rich extracellular polysaccharides at twice the rate of control cells. The polysaccharides consisted of a mixture of several polymers containing predominantly arabinose, galactose and galacturonic acid. Ca2+-deprived cells also secreted three times more extracellular proteins, containing many glycan-hydrolytic enzymes, into the medium than did normal cells. SDS-PAGE analysis revealed several distinct changes in the polypeptide pattern in the medium of control and Ca2+-deprived cells. Activities of α -galactosidase, β -glucosidase and exo- polygalacturonase increased considerably during Ca2+ deficiency, whereas α - l -arabinofuranosidase and β -galactosidase activities were much reduced.  相似文献   

8.
Plant cell walls consist of carbohydrate, protein, and aromatic compounds and are essential to the proper growth and development of plants. The carbohydrate components make up ∼90% of the primary wall, and are critical to wall function. There is a diversity of polysaccharides that make up the wall and that are classified as one of three types: cellulose, hemicellulose, or pectin. The pectins, which are most abundant in the plant primary cell walls and the middle lamellae, are a class of molecules defined by the presence of galacturonic acid. The pectic polysaccharides include the galacturonans (homogalacturonan, substituted galacturonans, and RG-II) and rhamnogalacturonan-I. Galacturonans have a backbone that consists of α-1,4-linked galacturonic acid. The identification of glycosyltransferases involved in pectin synthesis is essential to the study of cell wall function in plant growth and development and for maximizing the value and use of plant polysaccharides in industry and human health. A detailed synopsis of the existing literature on pectin structure, function, and biosynthesis is presented.  相似文献   

9.
Buckwheat (Fagopyrum esculentum Moench.) thin cell-layers (TCLs) cultured individually in a liquid medium were used to test the root-inducing activity of pectic polysaccharides with a degree of polymerization (DP) of 20–25, isolated from pea (Pisum sativum L.) stem cell walls. These pectic fragments induced more rapid root formation on the explants in comparison with untreated controls. This pectic fragment treatment also promoted root growth as measured by both fresh and dry weights and about doubled the number of roots formed. This buckwheat TCL system is proposed as a new bioassay for oligosaccharins due to its sensitivity, reproducibility and ease of preparation.  相似文献   

10.
Methylation analysis was used to characterize the pectic polysaccharides from mustard cotyledons, a tissue with potential for rapid biological change involving the walls. The methylated sugars were identified by g.l.c. and paper chromatography after conversion of uronic acid derivatives into [(3)H]hexoses, and confirmed by the formation of crystalline derivatives of most of the main products, which were: 2,3-di-O-methyl-d-[6-(3)H]galactose, 2-O-methyl-d-[6-(3)H]galactose, 3,4-di-O-methylrhamnose, 3-O-methylrhamnose, 2,3,5-tri-O-methyl-l-arabinose, 2,3-di-O-methyl-l-arabinose, 2-O-methyl-l-arabinose, 2,3,4-tri-O-methyl-d-xylose and 2,3,4,6-tetra-O-methyl-d-galactose in the molar proportions 1.00:1.14:0.54:0.74:2.86:2.50:2.24:1.88:0.32. The structural units present are similar to those in wellknown polysaccharides from mature tissues, but their proportions are strikingly different. Uninterrupted and unbranched galacturonan segments can therefore contribute little cohesion to these walls, and it is suggested that this correlates with a function of the wall matrix to hydrate and permit readjustment, during germination, of structural elements or wall surfaces or both.  相似文献   

11.
Infrared absorption spectra of film specimens of oat coleoptilecell walls, before and after protease treatment and after treatmentfor removal of lipid materials, pectic substances and hemicellulose,were recorded, and the characteristic bands in the spectrumof the wall assigned. Polarization spectrum measurements onthe wall provided evidence indicating that the non-cellulosicpolysaccharide matrix as well as cellulose micronbrils has anoriented structure in the wall and that the oriented structurechanges during extension growth as well as upon mechanical extensionof the walls. (Received July 22, 1977; )  相似文献   

12.
The effect of auxin on cell wall mass in the epidermis of third internodes of Pisum sativum L. cv. Alaska grown in dim red light was investigated using epidermal peels, to determine whether epidermal peels reflect the behavior of the outer epidermal cell wall. In contrast to the outer epidermal wall itself, where auxin caused thinning in proportion to growth (M.S. Bret-Harte et al, 1991, Planta 185, 462–471), auxin promoted an increase in wall mass in epidermal peels from treated internode segments in the absence of exogenously supplied sugar. The percentage gain in mass was smaller than the percentage elongation, however, so mass per unit length decreased in peels from auxin-treated segments. Epidermal peels from auxin-treated segments gained more wall mass than control peels even when adhering internal tissue at the basal end of the peel was removed. Epidermal peels also had a gross composition different from that of the outer wall alone (M.S. Bret-Harte and L.D. Talbott, 1993, Planta 190, 369–378). These discrepancies can be explained by the observation that the outer wall makes up only 30% of the mass of the epidermal peel. It appears that the inner walls of the epidermis, and walls of the outer layer of cortical cells that remain attached to the epidermis during peeling, nearly maintain their thickness by biosynthesis while the outer wall loses mass as previously described (Bret-Harte et al. 1991). These results indicate that epidermal peels may not be a good system for examining the biochemical and physiological properties of the outer epidermal cell wall.I would like to thank Dr. Peter M. Ray, of Stanford University, for the use of experimental facilities, helpful discussions, and technical and editorial assistance, Dr. Winslow R. Briggs, of the Carnegie Institute of Washington, for helpful discussions and for the use of experimental facilities, Dr. Paul B. Green, of Stanford University, for financial support, and Dr. Wendy K. Silk, of the Department of Land, Air, and Water Resources, University of California, Davis, for financial support. This work was supported by a National Science Foundation Graduate Fellowship, National Science Foundation grant DCB8801493 to Paul B. Green, and the generosity of Wendy K. Silk in the final writing.  相似文献   

13.
The hydration and swelling of pectic polysaccharides was examined at different pHs and ionic strengths as a function of osmotic stress. For weakly charged pectic polysaccharides at low concentrations of a monovalent salt (20 mM), the main driving force for swelling originates from a polyelectrolyte effect due to the translational entropy of ions within the film. Swelling is reduced at higher salt concentrations and lower pHs. Polyelectrolyte collapse and minimal swelling is observed for more highly charged pectic polysaccharides. Replacement of the Na(+) counterion with Ca(2+) results in minimal swelling and the formation of network structures even for the weakly charged pectic polysaccharides.  相似文献   

14.
Immunoprofiling of pectic polysaccharides   总被引:3,自引:0,他引:3  
An assay is described for the rapid identification of unbranched homogalacturonan and branched components occurring in samples of pectic polysaccharides using anti-pectin monoclonal antibodies. The assay involves the immunodetection of pectic polysaccharides after separation into two components during the application in small volumes to nitrocellulose. In this system, homoglacturonan-rich components migrate further on the nitrocellulose in contrast to pectic components with abundant side chains, resulting in a clear separation and discrete rings of distinct polysaccharides that can be identified using specific antibodies. This procedure is also directly applicable to preparations of plant material without the need for isolation of pectic polysaccharides.  相似文献   

15.
《Carbohydrate research》1987,165(1):53-68
Mild, selective, and sequential methods have been used to extract pectic polysaccharides from cider apple pomace. The extracts have been characterised by static and dynamic light-scattering. CDTA (cyclohexane-trans-1,2-diaminetetra-acetate)-soluble pectic polysaccharides from the middle lamellae were characterised as having a broad-molecular-weight distribution (Mw = 4.2 × 106)_of non-free-draining stiff coils. CDTA-insoluble and Na2CO3-soluble pectic polysaccharides (Mw = 1.1 × 106) from the primary cell walls showed properties consistent with branched, cross-linked, microgel structures.  相似文献   

16.
Infrared evidence indicated that the oriented structure of matrixpolysaccharides changed on mechanical extension as well as duringextension growth of Nitella cell walls. The importance of theultrastructure of polysaccharide gels in controlling extensiongrowth is discussed. (Received July 3, 1974; )  相似文献   

17.
Mutation in the Arabidopsis thaliana QUASIMODO 1 gene (QUA1), which encodes a putative glycosyltransferase, reduces cell wall pectin content and cell adhesion. Suspension-cultured calli were generated from roots of wild-type (wt) and qua1-1 A. thaliana plants. The altered cell adhesion phenotype of the qua1-1 plant was also found with its suspension-cultured calli. Cell walls of both wt and qua1-1 calli were analysed by chemical, enzymatic and immunohistochemical techniques in order to assess the role of pectic polysaccharides in the mutant phenotype. Compared with the wt, qua1-1 calli cell walls contained more arabinose (23.6 versus 21.6 mol%), rhamnose (3.1 versus 2.7 mol%), and fucose (1.4 versus 1.2 mol%) and less uronic acid (24.2 versus 27.6 mol%), and they were less methyl-esterified (DM: 22.9% versus 30.3%). When sequential pectin extraction of calli cell walls was performed, qua1-1 water-soluble and chelator-soluble extracts contained more arabinose and less uronic acid than wt. Water-soluble pectins were less methyl-esterified in qua1-1 than in wt. Chelator-soluble pectins were more acetyl-esterified in qua1-1. Differences in the cell wall chemistry of wt and mutant calli were supported by a reduction in JIM7 labelling (methyl-esterified homogalacturonan) of the whole wall in small cells and particularly by a reduced labelling with 2F4 (calcium-associated homogalacturonan) in the middle lamella at tricellular junctions of large qua1-1 cells. Differences in the oligosaccharide profile obtained after endopolygalacturonase degradation of alkali extracts from qua1-1 and wt calli indicated variations in the structure of covalently bonded homogalacturonan. About 29% more extracellular polymers rich in pectins were recovered from the calli culture medium of qua1-1 compared with wt. These results show that perturbation of QUASIMODO 1-1 gene expression in calli resulted in alterations of homogalacturonan content and cell wall location. The consequences of these structural variations are discussed with regard to plant cell adhesion.  相似文献   

18.
Buffer-soluble arabinogalactan-proteins (AGPs) and pectins from grape berry skin and pulp tissues have been isolated and their structure has been partly determined. Pectic polysaccharides from the cell wall material were solubilized by treating pulp and skin cell walls with homogeneous glycosyl hydrolases. Homogalacturonans, rhamnogalacturonans I (RG-I), and rhamnogalacturonan II (RG-II) of each tissue have been fractionated by high resolution size exclusion chromatography and their relative distribution and major structural features have been determined. It has been shown that pulp tissue contains two-fold more buffer-soluble AGPs and pectins than skin tissue and we have determined that 75% of the grape berry walls originates from the skin tissue. There is three-fold more RG-I and RG-II in skin tissue than in pulp tissue and three-fold more RG-I than RG-II in the grape berry cell walls.

The results of this study have shown that the grape polysaccharide content of a wine is related to the type of tissue used for wine making and to the solubility of the grape polysaccharides and their resistance to fragmentation by grape and yeast glycanases.  相似文献   


19.
Stephen C. Fry 《Planta》1987,171(2):205-211
The pectic polysaccharides of spinach cell walls carry feruloyl groups on arabinose and galactose residues. The following experiments were designed to discover whether the arabinose residues are feruloylated intra-or extracellularly. Cultured spinach cells started to incorporate exogenous [3H]arabinose into polymers at a linear rate after a lag period of approx. 3–4 min, although radioactive polysaccharides and extensin did not start to appear outside the plasmalemma until after an approx. 25-min lag. In the same cells, polysaccharide-bound feruloyl-[3H]arabinose units starded to accumulate radioactivity at a linear rate after a lag period of approx. 4–5 min. Therefore, arabinose residues of polysaccharides began to be feruloylated while still intracellular. The rate of formation of polysaccharide-bound feruloyl-[3H]arabinose units did not appreciably increase after 25 min, showing that any additional extracellular feruloylation of the polysaccharide was relatively slow. This conclusion was supported by two different types of pulse-chase experiments, one of which was designed to detect feruloylation of polysaccharides up to 6 d after synthesis.Abbreviations Ara2 3-O–-L-arabinopyranosyl-L-arabinose - BAW butan-1-ol/acetic acid/water (12:3:5, by vol.) - BEW butan-1-ol/ethanol/water (20:5:11, by vol.) - EPW ethyl acetate/pyridine/water (8:2:1, by vol.) - Fer-Ara2 3-O–(3-O–feruloyl--L-arabinopyranosyl)-L-arabinose - Fer-Gal2 4-O–(6-O–feruloyl--D-galactopyranosyl)-D-galactose  相似文献   

20.
UDP-glucose dehydrogenase (UGD) plays a key role in the nucleotide sugar biosynthetic pathway, as its product UDP-glucuronic acid is the common precursor for arabinose, xylose, galacturonic acid, and apiose residues found in the cell wall. In this study we characterize an Arabidopsis thaliana double mutant ugd2,3 that lacks two of the four UGD isoforms. This mutant was obtained from a cross of ugd2 and ugd3 single mutants, which do not show phenotypical differences compared with the WT. In contrast, ugd2,3 has a strong dwarfed phenotype and often develops seedlings with severe root defects suggesting that the UGD2 and UGD3 isoforms act in concert. Differences in its cell wall composition in comparison to the WT were determined using biochemical methods indicating a significant reduction in arabinose, xylose, apiose, and galacturonic acid residues. Xyloglucan is less substituted with xylose, and pectins have a reduced amount of arabinan side chains. In particular, the amount of the apiose containing side chains A and B of rhamnogalacturonan II is strongly reduced, resulting in a swollen cell wall. The alternative pathway to UDP-glucuronic acid with the key enzyme myo-inositol oxygenase is not up-regulated in ugd2,3. The pathway also does not complement the ugd2,3 mutation, likely because the supply of myo-inositol is limited. Taken together, the presented data underline the importance of UDP GlcA for plant primary cell wall formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号