首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Reintroductions of the boll weevil, Anthonomus grandis grandis Boheman, into areas of the United States where it has been eradicated or suppressed are very expensive to mitigate. There is concern that a cotton gin in an eradication zone may serve as a site of boll weevil reintroductions when processing cotton harvested in a neighboring infested zone. Similarly, there is a question whether weevil-free areas can safely import gin products, such as cottonseed and baled lint, from infested areas without risking an introduction. Many countries require fumigation of imported U.S. cotton bales to protect against boll weevil introductions, costing the U.S. cotton industry millions of dollars annually. In previously reported experiments, we quantified the potential for boll weevils to survive passage through precleaning machinery in the gin. In this study, we quantified survival potential of boll weevils passing through the gin stand and segregating into the cottonseed, mote, or lint fractions. We also examined boll weevil survival when passed with ginned lint through a lint cleaner. We present a flow chart of experimentally determined survival potentials of boll weevils passing through the various subprocesses of the gin, from which one can calculate the risk of a live boll weevil reaching any point in the process. Our data show that there is virtually no chance of a boll weevil being segregated alive into the cottonseed or of one surviving in the lint to approach the bale press. Therefore, quarantine or fumigation of cottonseed and cotton bales to guard against boll weevil introductions is unnecessary.  相似文献   

2.
There is concern that cotton gins located in boll weevil, Anthonomus grandis grandis Boheman, eradication zones serving customers in adjacent infested zones may serve as a site for boll weevil reintroductions if weevils are transported alive inside cotton modules. We surveyed fields in three distinct areas of Texas and found that weevils can be present in large numbers in cotton fields that have been defoliated and desiccated in preparation for harvest, both as free adults and as immatures inside unopened bolls. Harvested cotton taken from module builders indicated that approximately = 100-3700 adult boll weevils were packed inside modules constructed at the sampled fields. Marked weevils were forced through a laboratory field cleaner (bur extractor) commonly mounted on stripper-harvesters, and 14% were recovered alive in the seed cotton fraction and lived at least to 24 h. Survival of weevils placed inside modules declined over time up to 7 d, but the magnitude of the decline varied with experimental conditions. In one experiment, 91% of the weevils survived to 7 d, whereas under harsher environmental conditions, only 11% survived that long. Together, our results indicate that when cotton is harvested in an infested area, boll weevils likely will be packed alive into cotton modules, and many will still be alive by the time the module is fed into the gin, at least up to 7 d after the module's construction.  相似文献   

3.
There is concern that gins located in boll weevil, Anthonomus grandis grandis Boheman, eradication zones may become points of reintroduction when they process cotton grown in a neighboring infested area. We estimated boll weevil survival through two typical machine sequences used in commercial cotton gins to clean and dry the seed cotton in advance of the gin stand, as well as separately through two incline cylinder cleaners or one or two tower dryers operating at different temperatures. Large numbers of laboratory-reared adult boll weevils were marked with fluorescent powder, fed into the test system, and recovered with the assistance of blacklights. We found no evidence of survival through the seed cotton cleaning systems even when the dryers were not heated, or when passed separately through the two incline cleaners alone. Upper confidence limits (95%) were calculated for the observed zero recoveries based on sample size and the binomial distribution, and these represent the statistical worst-case (i.e., highest) survival potential. Survival through heated tower dryers declined rapidly to zero at higher temperatures, especially when two dryers were running. Although we conclude that the potential for survival of weevils in the seed cotton to the gin stand is zero or close to zero, a small percentage of live weevils was recovered in the green boll/rock trap, which may represent the greatest threat of reintroduction at the gin. Escape of live weevils with the gin trash is also possible, and studies addressing this issue will be presented elsewhere.  相似文献   

4.
There is concern that cotton gins may serve as loci for reintroduction of boll weevils, Anthonomus grandis grandis Boheman, to eradicated or suppressed zones when processing weevil-infested cotton from neighboring zones. Previous work has shown that virtually all weevils entering the gin in the seed cotton will be removed before they reach the gin stand. Those not killed by the seed cotton cleaning machinery will be shunted alive into the trash fraction, which passes through a centrifugal trash fan before exiting the gin. The objective of this study was to determine survival potential of boll weevils passed through a trash fan. Marked adult weevils were distributed in gin trash and fed through a 82.6-cm (32.5-in.) diameter centrifugal fan operated across a range of fan-tip speeds. A small number of boll weevils were recovered alive immediately after passage through the fan, but all were severely injured and did not survive 24 h. In another experiment, green bolls infested with both adult- and larval-stage weevils were fed through the fan. Several teneral adults survived 24 h, and there was no evidence that fan-tip speed affected either initial survival of weevils, or the number of unbroken boll locks that could harbor an infesting weevil. Thus, designating a minimum fan-tip speed for ensuring complete kill is not possible for the boll weevil. Experiments suggest that a device installed in a gin that partially crushes or cracks bolls open before entering a trash fan will increase mortality, possibly enough that further precautions would be unnecessary.  相似文献   

5.
Effects of soil condition and burial on boll weevil, Anthonomus grandis grandis Boheman, mortality in fallen cotton, Gossypium hirsutum L., fruit were assessed in this study. During hot weather immediately after summer harvest operations in the Lower Rio Grande Valley of Texas, burial of infested fruit in conventionally tilled field plots permitted significantly greater survival of weevils than in no-tillage plots. Burial of infested squares protected developing weevils from heat and desiccation that cause high mortality on the soil surface during and after harvest in midsummer and late summer. A laboratory assay showed that burial of infested squares resulted in significantly greater weevil mortality in wet than in dry sandy or clay soils. Significantly fewer weevils rose to the soil surface after burial of infested bolls during winter compared with bolls set on the soil surface, a likely result of wetting by winter rainfall. A combination of leaving infested fruit exposed to heat before the onset of cooler winter temperatures and burial by tillage when temperatures begin to cool might be an important tactic for reducing populations of boll weevils that overwinter in cotton fields.  相似文献   

6.
Boll weevil traps baited with a ComboLure (25 of mg grandlure + 30 mg of eugenol + 90 of mg dichlorvos [DDVP]), an extended-release lure (25 mg of grandlure + 30 mg of eugenol + 60 of mg DDVP kill-strip), and extended-release lure with no DDVP were evaluated for boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), captures in South Texas cotton, Gossypium hirsutum L., fields during February-March 2005 and March-April 2006. The traps were serviced once a week for five consecutive weeks by using the same methodology as active boll weevil eradication programs. Mean captured boll weevils from extended-release lures with no DDVP were significantly higher in five of 10 trapping weeks compared with captures of the ComboLure and extended lure. Weekly mortality of boll weevils captured was similar for the ComboLure (72.6 +/- 4.7%) and extended lure + DDVP (73.5 +/- 4.0%), and both were significantly higher than the extended lure (32.8 +/- 5.0%) with no DDVP. The presence or absence of DDVP did not significantly affect the sex ratio of field-captured boll weevils. We found no functional reasoning for using DDVP in large scale trapping of boll weevils regardless of the formulation or presentation in the trap. We conducted two additional trapping evaluations after the 2005 and 2006 studies, but the numbers of boll weevils captured were too low for statistical comparisons, indicating that boll weevil eradication is reducing populations in the Rio Grande Valley of Texas.  相似文献   

7.
The phenology and ecology of Hibiscus pernambucensis Arruda and its interaction and importance in maintaining populations of the boll weevil, Anthonomus grandis Boheman, were studied over a period of 3 yr in the Soconusco Region of the state of Chiapas, Mexico. H. pernambucensis is a small tree of Neotropical distribution, restricted to lowland areas, and generally associated with halophytic vegetation. This species is found exclusively along the shores of brackish estuaries, in or near mangrove swamps in southeastern Mexico. In this region, H. pernambucensis has a highly seasonal flowering pattern in which the greatest bud production occurs shortly after the start of the rainy season in May and the highest fruit production occurs in July and August. Boll weevil larvae were found in buds of H. pernambucensis during all months but February and densities of buds and weevils were highest from May through September. The percentage of buds infested with boll weevil larvae rarely exceeded 30%. Because plant densities and reproductive output of H. pernambucensis is relatively low and, consequently, the number of oviposition and larval development sites for boll weevils is limited, the importance of this plant as a source of boll weevils with potential of attacking commercial cotton is minimal in comparison with the quantity produced in cultivated cotton. However, the plant could be important as a reservoir of boll weevils in areas of boll weevil quarantine and eradication programs. The factors and circumstances that may have led to this apparent recent host shift of the boll weevil in this region are discussed.  相似文献   

8.
The boll weevil, Anthonomus grandis (Boheman), has been a major insect pest of cotton production in the US, accounting for yield losses and control costs on the order of several billion US dollars since the introduction of the pest in 1892. Boll weevil eradication programs have eliminated reproducing populations in nearly 94%, and progressed toward eradication within the remaining 6%, of cotton production areas. However, the ability of weevils to disperse and reinfest eradicated zones threatens to undermine the previous investment toward eradication of this pest. In this study, the HYSPLIT atmospheric dispersion model was used to simulate daily wind-aided dispersal of weevils from the Lower Rio Grande Valley (LRGV) of southern Texas and northeastern Mexico. Simulated weevil dispersal was compared with weekly capture of weevils in pheromone traps along highway trap lines between the LRGV and the South Texas / Winter Garden zone of the Texas Boll Weevil Eradication Program. A logistic regression model was fit to the probability of capturing at least one weevil in individual pheromone traps relative to specific values of simulated weevil dispersal, which resulted in 60.4% concordance, 21.3% discordance, and 18.3% ties in estimating captures and non-captures. During the first full year of active eradication with widespread insecticide applications in 2006, the dispersal model accurately estimated 71.8%, erroneously estimated 12.5%, and tied 15.7% of capture and non-capture events. Model simulations provide a temporal risk assessment over large areas of weevil reinfestation resulting from dispersal by prevailing winds. Eradication program managers can use the model risk assessment information to effectively schedule and target enhanced trapping, crop scouting, and insecticide applications.  相似文献   

9.
It is known that substantial boll weevil, Anthonomus grandis grandis Boheman, individuals can survive mild subtropical winters in some habitats, such as citrus orchards. Our study shows that endocarp of the fruit from prickly pear cactus, Opuntia engelmannii Salm-Dyck ex. Engel.; orange, Citrus sinensis L. Osbeck.; and grapefruit, Citrus paradisi Macfad., can sustain newly emerged adult boll weevils for >5 mo, which is the duration of the cotton-free season in the subtropical Lower Rio Grande Valley of Texas and other cotton-growing areas in the Western Hemisphere. Cotton, Gossypium hirsutum L., and the boll weevil occur in the same areas with one or all three plant species (or other citrus and Opuntia species that might also nourish boll weevils) from south Texas to Argentina. Although adult boll weevils did not produce eggs when fed exclusively on the endocarps of prickly pear, orange, or grapefruit, these plants make it possible for boll weevils to survive from one cotton growing season to the next, which could pose challenges to eradication efforts.  相似文献   

10.
It is commonly believed that colonization of early-season cotton, Gossypium hirsutum L., by overwintered boll weevils, Anthonomus grandis grandis Boheman, is concentrated on field margins. However, supporting experimental evidence is not available. In 1999 and 2000, we examined colonization patterns of overwintered boll weevils in Central Texas cotton on the bases of adult collections by a pneumatic sampler and hand collections of abscised infested squares. Samples were taken from sites arranged in a grid that extended inward >70 m from the field margin. Adults were collected from shortly after seedling emergence until the flowering stage, and infested squares were collected during the one-third grown square stage. Despite numerical trends, the numbers of adult weevils collected were not significantly different between years or sexes, or among plant phenological stages. Field-to-field variation among collections was considerable and likely prevented detection of differences among these factors. Spatial patterns represented by adult weevil and infested square collections were examined by logistic regressions fitted to the respective probabilities of weevil detection at each designated sample site. Although we observed trends for slightly decreased probability of weevil detection with increased distance from the field margin, these trends were too weak to be demonstrated statistically. Our results indicate the boll weevil does not consistently exhibit a strong edge-oriented colonization pattern, and that management tactics that are predicated on these patterns, such as border sprays, should be used with caution.  相似文献   

11.
The standard practice of two or three preemptive insecticide applications at the start of pinhead (1-2-mm-diameter) squaring followed by threshold-triggered (when 10% of randomly selected squares have oviposition punctures) insecticide applications for boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), control does not provide reliable protection of cotton, Gossypium hirsutum L., lint production. This study, conducted during 2004 and 2005, showed that three to six fewer spray applications in a "proactive" approach, in which spraying began at the start of large (5.5-8-mm-diameter) square formation and continued at approximately 7-d intervals while large squares were abundant, resulted in fewer infested squares and 1.4- to 1.7-fold more lint than the standard treatment. Fewer sprays and increased yield made proactive spraying significantly more profitable than the standard approach, which resulted in relatively low or negative economic returns. Harvest at 75% boll-split in the proactive spray regime of 2005 resulted in four-fold greater economic return than cotton harvested at 40% boll-split because of improved protection of large squares and the elimination of late-season sprays inherent to standard spray regime despite the cost of an extra irrigation in the 75% boll-split treatments. The earlier, 40% harvest trigger does not avoid high late-season boll weevil pressure, which exerts less impact on bolls, the predominant form of fruiting body at that time, than on squares. Proactive spraying and harvest timing are based on an important relationship between nutrition, boll weevil reproduction, and economic inputs; therefore, the tactic of combining proaction with harvest at 75% boll-split is applicable where boll weevils are problematic regardless of climate or region, or whether an eradication program is ongoing.  相似文献   

12.
Flat and cylindrical adhesive boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), pheromone traps captured significantly more (P < or = 0.05) boll weevils than the Hercon (Hercon Environmental, Emigsville, PA) trap during the late cotton-growing season, and larger adhesive areas were associated with higher captures; a flat plywood board collected the most boll weevils because it had the largest surface area. The flat board trap, chosen for measuring large late-season adult boll weevil populations common to the Lower Rio Grande Valley of Texas in 2000 and 2001, collected more (P < or = 0.05) weevils when deployed in proximity to natural and cultivated perennial vegetation, and mean numbers of captured boll weevils were higher (P < or = 0.0001) on the leeward sides of the board traps than on the windward sides. The board trap had an estimated potential capacity of approximately 27,800 boll weevils, and the large capacity of the board trap allowed for more accurate measurements of large adult boll weevil populations than the more limited Hercon trap. Measurement of adult boll weevil numbers after the routine field operations of defoliation, harvest, shredding, and stalk-pulling, demonstrated that large populations of boll weevils persist in cotton fields even after the cotton crop has been destroyed. Increases (P < or = 0.05) in the percentage variation of trapped boll weevils relative to the numbers collected just before each field operation were observed after defoliation, harvest, shredding, and stalk-pulling, but the percentage variations followed a quadratic pattern with significant correlation (P < 0.0001; 0.59 < adjusted r2 < 0.73). Numbers of adult boll weevils caught on board traps deployed at 15.24-m intervals on windward and leeward edges of cotton fields suggested that boll weevil populations in flight after field disturbances might be affected by large-capacity trapping.  相似文献   

13.
Abstract  The reproductive potential of overwintering boll weevil, Anthonomus grandis grandis (Boheman), females collected from pheromone traps in September, November and January, fed for 1, 3, and 5 weeks on plant pollens, and then provided cotton squares, was determined in the laboratory at 27 ± 1°C, 65% RH, and a photoperiod 13 : 11 (L : D) h. Duration of pollen feeding by overwintering boll weevils did not significantly influence egg and feeding punctures, or puncture ratios (egg to total punctures) for any of the three months of parent weevil collections when provided cotton squares on a daily basis. However, punctures and puncture ratios are significantly different when comparing mean data between months of boll weevil collections. When boll weevils were provided with cotton squares daily, the pre-ovipositional periods of female parents captured in September, November and January were 5, 9 and 14 days, respectively. The rate of eggs by females was significantly lower during November and January than September. Female parents collected in September produced a significantly higher percentage of eggs yielding adult progeny than those collected in November and January. Life table parameters indicated that net reproductive rate ( R o) of boll weevil females collected in September was 1.2-fold higher than those collected in November and 10.7-fold higher than those collected in January. Except for testes size, no differences in male reproductive parameters were observed during the cotton-free period compared with males captured during mid-cotton (June). The number of oocytes in the ovarioles and the number of oocytes containing yolk were significantly lower during September, November and January compared with June. The reproductive potential of overwintering boll weevil females collected in different months is an important consideration in determining the success of any control strategy.  相似文献   

14.
Field experiments in the subtropical Lower Rio Grande Valley of Texas were conducted to determine the extent of adult boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), dispersal from cotton, Gossypium hirsutum L., fields during harvest operations and the noncotton-growing ("overwinter") period between 1 September and 1 February. Using unbaited large capacity boll weevil traps placed at intervals extending outward from commercial field edges, boll weevils did not move in substantial numbers during harvest much beyond 30 m, primarily in the direction of prevailing winds. From traps placed in fallow cotton; citrus; lake edge; pasture; treeline; sorghum, Sorghum bicolor (L.) Moench, and sugarcane, Saccharum spp., habitats during the overwinter period, the most boll weevils were collected in the fallow cotton fields and adjacent treelines during the fall. However, the greatest abundances of boll weevils were found in citrus orchards in the spring, before newly planted cotton fields began to square. One of the three lake edges also harbored substantial populations in the spring. Egg development in females was not detected between November and April, but in cotton fields most females were gravid between May and August when cotton fruiting bodies were available. Mated females, as determined by discoloration of the spermatheca, made up 80-100% of the female population during November and December but declined to approximately 50% in February. The lower incidence of mating indicates a reduction in physical activity, regardless of overwinter habitat, until percentages increased in March and April after cotton fields had been planted and squares were forming.  相似文献   

15.
The feeding and oviposition activity of overwintering boll weevils, Anthonomus grandis grandis (Boheman), and seasonal fluctuations in development, survival, and reproduction of progeny of overwintering and first- and second-generation boll weevil females were determined in the laboratory at 27 degrees C, 65% RH, and a photoperiod of 12:12 (L:D) h. During the cotton-free period in the Lower Rio Grande Valley, female boll weevils without access to cotton resorb their unlaid eggs and enter reproductive diapause. However, when they were provided daily with greenhouse-grown cotton squares, commencement of oviposition began after 7, 15, or 20 d, depending on when they were captured. Females captured later in the winter fed longer before laying eggs than those captured in the early fall, suggesting that it may take females longer to terminate diapause the longer they have been dormant. The rate of feeding by females was significantly less during the winter months, and this may have affected the rate of diet-mediated termination of dormancy. Females of the first and second generations after the overwintering generation produced a significantly higher percentage of progeny surviving to adulthood and a higher proportion of these progeny were females. Offspring development time from overwintering female parents was significantly longer than that from first and second generations under the same laboratory conditions. The total number of lifetime eggs produced by females of the second generation during the cotton-growing season were approximately 9.9-fold higher than for overwintering females and 1.5-fold higher than for first-generation females. Life table calculations indicated that the population of second-generation boll weevils increased an average of 1.5-fold higher each generation than for females of the first generation and 22.6-fold higher than for overwintering females. Our data showed variation in boll weevil survival, development, and reproductive potential among the overwintering and first- and second-generation females, suggesting inherent seasonal fluctuations in these parameters.  相似文献   

16.
Gretchen D. Jones 《Grana》2013,52(3):206-214
The boll weevil, Anthonomus grandis, entered the United States of America in the early twentieth century and became a major pest in cotton, Gossypium spp. Shortly after the passage of Tropical Storm Erin on 16 August 2007 through the South Texas/Winter Garden boll weevil eradication zone, over 150 boll weevils were captured in the Southern Rolling Plains (SRP) eradication zone that was essentially weevil-free since 2003. Pollen analyses were made of the SRP weevils and weevils collected in two suspected source zones, Cameron (Southern Blacklands eradication zone) and Uvalde (Winter Garden eradication zone). An additional examination of the palynological evidence and examination of additional pollen residue shed new light on this event and strengthens the conclusion that the Uvalde area was the source of the SRP weevils. A total of 192 pollen grains from 39 taxa were found in the SRP weevils: 1904 pollen grains from ten taxa from the Cameron weevils and 148 grains from 28 taxa in the Uvalde weevils. The SRP weevils shared 16 taxa, including Phermeranthus sp. (flameflower) with the Uvalde weevils and only five taxa with the Cameron weevils. Common taxa between SRP and Uvalde weevils and the lack of the dominant ‘low spine’ Asteraceae that occurred in all Cameron samples confirm that the SRP weevils originated from the South Texas/Winter Garden zone. Problems associated with this type of research are similar to those in forensic palynology. These problems include the unknown origin of the weevils, pollen contamination and care and storage of the samples.  相似文献   

17.
The susceptibility of the boll weevil (BW), Anthonomus grandis Boheman, to Steinernema riobrave and other nematode species in petri dishes, soil (Hidalgo sandy clay loam), and cotton bolls and squares was investigated. Third instar weevils were susceptible to entomopathogenic nematode (EN) species and strains in petri dish bioassays at 30 degrees C. Lower LC(50)'s occurred with S. riobrave TX- 355 (2 nematodes per weevil), S. glaseri NC (3), Heterorhabditis indicus HOM-1 (5), and H. bacteriophora HbL (7) than H. bacteriophora IN (13), S. riobrave TX (14), and H. bacteriophora HP88 (21). When infective juveniles (IJs) of S. riobrave were applied to weevils on filter paper at 25 degrees C, the LC(50) of S. riobrave TX for first, second, and third instars, pupae, and 1-day-old and 10-days-old adult weevils were 4, 5, 4, 12, 13, and 11IJs per weevil, respectively. The mean time to death, from lowest to highest concentration, for the first instar (2.07 and 1.27days) and second instar (2.55 and 1.39days) weevils were faster than older weevil stages. But, at concentrations of 50 and 100IJs/weevil, the mean time to death for the third instar, pupa and adult weevils were similar (1.84 and 2.67days). One hundred percent weevil mortality (all weevil stages) occurred 3days after exposure to 100IJs per weevil. Invasion efficiency rankings for nematode concentration were inconsistent and changed with weevil stage from 15 to 100% when weevils were exposed to 100 and 1IJs/weevil, respectively. However, there was a consistent relationship between male:female nematode sex ratio (1:1.6) and nematode concentration in all infected weevil stages. Nematode production per weevil cadaver increased with increased nematode concentrations. The overall mean yield of nematodes per weevil was 7680IJs. In potted soil experiments (30 degrees C), nematode concentration and soil moisture greatly influenced the nematode efficacy. At the most effective concentrations of 200,000 and 400,000IJs/m(2) in buried bolls or squares, higher insect mortalities resulted in pots with 20% soil moisture either in bolls (94 and 97% parasitism) or squares (92 and 100% parasitism) than those of 10% soil moisture in bolls (44 and 58% parasitism) or squares (0 and 13% parasitism). Similar results were obtained when nematodes were sprayed on the bolls and squares on the soil surface. This paper presents the first data on the efficacy of S. riobrave against the boll weevil, establishes the potential of EN to control the BW inside abscised squares and bolls that lay on the ground or buried in the soil.  相似文献   

18.
Abstract Effects of temperature on development, survival, and fecundity of boll weevil, Anthonomus grandis grandis Boheman, were assessed at 10, 11, 12, 15,20,25,30,35,45, and 46 °C; 65% relative humidity; and a photoperiod of 13:11 (L: D) h. The mortality of boll weevil immature stages was 100% at 12°C and decreased to 36.4% as the temperature increased to 25°C. When the temperature increased from 30 °C to 45 °C, the mortality of weevils also increased from 50.1% to 100%. From 15°C to 35°C, the bollweevilpreimaginal development rate was linearly related to temperature. The average development time of total boll weevil immature lifestages decreased 3.6-fold and the preovipositional period decreased 3.3-fold when the temperature was increased from 15°C to 30°C. The lower threshold for development was estimated at 10.9, 6.6, 7.0, and 9.0 °C for eggs, larval, pupal, and total immature stages, respectively, with total thermal time requirement to complete immature stages of 281.8 DD (degree day) (15°C) and 247.8 DD (35 °C). At 1LC and 46°C, weevil females did not oviposit. Longevity of adult females decreased 4.6-fold with increasing temperatures from 15°C to 35°C. Fecundity increased with increasing temperatures up to 30°C and significantly decreased thereafter. These findings will be useful in creating a temperature-based degree-day model for predicting the occurrence of key life stages in the field. An accurate predictor of a pest's development can be very important in determining sampling protocols, timing insecticide applications, or implementing an integrated pest management control strategy targeting susceptible life stages.  相似文献   

19.
The current standard practice of two to three preemptive insecticide applications at the start of pinhead (1-2-mm-diameter) squaring followed by threshold-triggered (whenever 10% of randomly selected squares have oviposition punctures) insecticide applications for boll weevil, Anthonomus grandis grandis Boheman, control does not provide a reliably positive impact on cotton, Gossypium hirsutum L., yields in subtropical conditions. This study showed that four fewer spray applications in a "proactive" approach, where spraying began at the start of large (5.5- 8-mm-diameter) square formation and continued at 7- to 8-d intervals while large squares were abundant, resulted in fewer infested squares and 46-56% more yield than the standard treatment at two locations during 2004. The combination of fewer sprays and increased yield made the proactive approach 115-130% more profitable than the standard. The proactive approach entails protection only at the crop's most vulnerable stage (large squares) that, as a source of food, accelerates boll weevil reproduction. In contrast, the standard approach protects early season small squares and later season bolls, both of which contribute less to boll weevil reproduction than large squares. Proaction is an in-season crop protection approach that can be used to increase yield in individual fields during the same season and that could be incorporated into boll weevil eradication strategy that involves later diapause sprays. Because proaction is based on an important relationship between the cotton plant and boll weevil reproduction, the tactic will probably be effective regardless of climate or region.  相似文献   

20.
Tarnished plant bugs, Lygus lineolaris (Palisot de Beauvois), from regions 1, 2, and 3 of the boll weevil, Anthonomous grandis Boheman, eradication program in Mississippi were collected from wild hosts and tested for malathion resistance during the spring and fall of 2000 and 2001. Plant bugs were also tested in region 1 in late-July and October of 1999, just before and after multiple applications of ultra-low-volume (ULV) malathion were used for reproduction-diapause control of boll weevils in August and September. Regions 1 (north Delta), 2 (south Delta), and 3 (hills) began boll weevil eradication in 1999, 1998, and 1997, respectively. A glass-vial bioassay was used to determine resistance in plant bugs to malathion by comparing LC50 values against an LC50 value obtained for susceptible plant bugs. Comparison of the LC50 value obtained for plant bugs at a location in the spring was also made with the LC50 value obtained in the fall at the same location. After multiple applications of malathion made for reproduction-diapause boll weevil control in region 1 in August and September, malathion resistance increased by 4.9-, 6.5-, and 20.8-fold in plant bug populations from the three test locations. Results from testing bugs from all three eradication regions were similar. Malathion resistance usually increased significantly from spring to fall and then declined significantly from fall to spring of the next year. Despite reduced use of malathion in all three eradication regions for boll weevils in 2001, resistance to malathion in plant bugs still increased significantly from spring to fall at all test locations in regions 1 and 2 (the Delta). Malathion resistance did not increase significantly in plant bug populations in region 3 (the hills) in 2001 from spring to fall at three of four test locations in this year. Possible causes for the higher malathion resistance found in plant bugs in the Delta are discussed. Overall test results showed that the use of malathion in boll weevil eradication in cotton probably contributed to increases in resistance to malathion in plant bug populations in the eradication areas. However, the expression of this resistance was usually rapidly lost by spring of the following year. Boll weevil eradication did not seem to produce a permanent increase in the expression of malathion resistance in tarnished plant bug populations found in the eradication regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号