首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Kinetics of electron transfer from soluble cytochrome c2 to the tetraheme cytochrome c have been measured in isolated reaction centers and in membrane fragments of the photosynthetic purple bacterium Rhodopseudomonas viridis by time-resolved flash absorption spectroscopy. Absorbance changes kinetics in the region of cytochrome -bands (540–560 nm) were measured at 21 °C under redox conditions where the two high-potential hemes (c-559 and c-556) of the tetraheme cytochrome were chemically reduced. After flash excitation, the heme c-559 donates an electron to the special pair of bacteriochlorophylls and is then re-reduced by heme c-556. The data show that oxidized heme c-556 is subsequently re-reduced by electron transfer from reduced cytochrome c2 present in the solution. The rate of this reaction has a non-linear dependence on the concentration of cytochrome c2, suggesting a (minimal) two-step mechanism involving the f ormation of a complex between cytochrome c2 and the reaction center, followed by intracomplex electron transfer. To explain the monophasic character of the reaction kinetics, we propose a collisional mechanism where the lifetime of the temporary complex is short compared to electron transfer. The limit of the halftime of the bimolecular process when extrapolated to high concentrations of cytochrome c2 is 60 ± 20 s. There is a large ionic strength effect on the kinetics of electron transfer from cytochrome c2 to heme c-556. The pseudofirst-order rate constant decreases from 1.1 × 107 M-1 s-1 to 1.3 × 106 M-1 s-1 when the ionic strength is increased from 1 to 1000 mM. The maximum rate (1.1 × 107 M-1 s-1) was obtained at about 1 mM ionic strength. This dependence of the rate on ionic strength s uggests that attractive electrostatic interactions contribute to the binding of cytochrome c2 with the tetraheme cytochrome. On the basis of our data and of previous molecular modelling, it is proposed that cytochrome c2 docks close to the low-potential heme c-554 and reduces heme c-556 via c-554.  相似文献   

2.
Reaction centers were purified from the thermophilic purple sulfur photosynthetic bacterium Chromatium tepidum. The reaction center consists of four polypeptides L, M, H and C, whose apparent molecular masses were determined to be 25, 30, 34 and 44 kDa, respectively, by polyacrylamide gel electrophoresis. The heaviest peptide corresponds to tightly bound cytochrome. The tightly bound cytochrome c contains two types of heme, high-potential c-556 and low-potential c-553. The low-potential heme is able to be photooxidized at 77 K. The reaction center exhibits laser-flash-induced absorption changes and circular dichroism spectra similar to those observed in other purple photosynthetic bacteria. Whole cells contain both ubiquinone and menaquinone. Reaction centers contain only a single active quinone; chemical analysis showed this to be menaquinone. Reaction center complexes without the tightly bound cytochrome were also prepared. The near-infrared pigment absorption bands are red-shifted in reaction centers with cytochrome compared to those without cytochrome.  相似文献   

3.
The reactions of Rhodopseudomonas viridis cytochrome c2 and horse cytochrome c with Rps. viridis photosynthetic reaction centers were studied by using both single- and double-flash excitation. Single-flash excitation of the reaction centers resulted in rapid photooxidation of cytochrome c-556 in the cytochrome subunit of the reaction center. The photooxidized cytochrome c-556 was subsequently reduced by electron transfer from ferrocytochrome c2 present in the solution. The rate constant for this reaction had a hyperbolic dependence on the concentration of cytochrome c2, consistent with the formation of a complex between cytochrome c2 and the reaction center. The dissociation constant of the complex was estimated to be 30 microM, and the rate of electron transfer within the 1:1 complex was 270 s-1. Double-flash experiments revealed that ferricytochrome c2 dissociated from the reaction center with a rate constant of greater than 100 s-1 and allowed another molecule of ferrocytochrome c2 to react. When both cytochrome c-556 and cytochrome c-559 were photooxidized with a double flash, the rate constant for reduction of both components was the same as that observed for cytochrome c-556 alone. The observed rate constant decreased by a factor of 14 as the ionic strength was increased from 5 mM to 1 M, indicating that electrostatic interactions contributed to binding. Molecular modeling studies revealed a possible cytochrome c2 binding site on the cytochrome subunit of the reaction center involving the negatively charged residues Glu-93, Glu-85, Glu-79, and Glu-67 which surround the heme crevice of cytochrome c-554.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Electrogenic and redox events in the reaction-centre complexes from Rhodopseudomonas viridis have been studied. In contrast to the previous points of view it is shown that all the four hemes of the tightly bound cytochrome c have different Em values (-60, +20, +310 and +380 mV). The first three hemes reveal alpha absorption maxima at 554 nm, 552 nm and 556 nm respectively. The 380-mV heme displays a split alpha band with a maximum at 559 nm and a shoulder at 552 nm. Such a splitting is due to non-degenerated Qx and Qy transitions in the iron-porphyrin ring as demonstrated by magnetic circular dichroism spectra. Fast kinetic measurements show that, at redox potentials when only high-potential hemes c-559 and c-556 are reduced, heme c-559 appears to be the electron donor to P-960+ (tau = 0.32 microsecond) whereas heme c-556 serves to rereduce c-559 (tau = 2.5 microsecond). Upon reduction of the third heme (c-552), the P-960+ reduction rate increases twofold (tau = 0.17 microsecond) and all photoinduced redox events within the cytochrome appear to be complete in less than 1 microsecond after the flash. The following sequence of the redox centers is tentatively suggested: c-554, c-556, c-552, c-559, P-960. To study electrogenesis, the reaction-centre complexes from Rps. viridis were incorporated into asolectin liposomes, and fast kinetics of laser flash-induced electric potential difference has been measured in proteoliposomes adsorbed on a phospholipid-impregnated film. The electrical difference induced by a single 15-ns flash was found to be as high as 100 mV. The photoelectric response has been found to involve four electrogenic stages associated with (I) QA reduction by P-960; (II) reduction of P-960+ by heme c-559; (III) reduction of c-559 by c-556 and (IV) protonation of Q2-B. The relative contributions of stages I, II, III and IV are found to be equal to 70%, 15%, 5% and 10%, respectively, of the overall electrogenic process. At the same time, the first three respective distances along the axis normal to the membrane plane covered by electrons, calculated from X-ray data of Deisenhofer et al. [J. Mol. Biol. 180, 385-398 (1984)], are 22%, 18.5% and 26%. This indicates that the efficiency of electrogenic phases depends first of all upon the value of the dielectric constant of the respective membrane regions rather than upon the distance between the redox groups involved.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Reaction centers were purified from the thermophilic purple sulfur photosynthetic bacterium Chromatium tepidum. The reaction center consists of four polypeptides L, M, H and C, whose apparent molecular masses were determined to be 25, 30, 34 and 44 kDa, respectively, by polyacrylamide gel electrophoresis. The heaviest peptide corresponds to tightly bound cytochrome. The tightly bound cytochrome c contains two types of heme, high-potential c-556 and low-potential c-553. The low-potential heme is able to be photooxidized at 77 K. The reaction center exhibits laser-flash-induced absorption changes and circular dichroism spectra similar to those observed in other purple photosynthetic bacteria. Whole cells contain both ubiquinone and menaquinone. Reaction centers contain only a single active quinone; chemical analysis showed this to be menaquinone. Reaction center complexes without the tightly bound cytochrome were also prepared. The near-infrared pigment absorption bands are red-shifted in reaction centers with cytochrome compared to those without cytochrome.  相似文献   

6.
J M Ortega  P Mathis 《FEBS letters》1992,301(1):45-48
The kinetics of electron transfer from the third highest potential heme (c-552, Em = +20 mV) to the primary donor (P-960) have been measured by flash absorption spectroscopy in isolated reaction centers of Rhodopseudomonas viridis between 300 K and 7 K. The data are analyzed on the basis of three exponential components with a very fast phase (t1/2 = 120 ns) dominating at high temperature and a very slow one (t1/2 = 1.2 ms) at low temperature. This multiphasic behavior is interpreted in terms of the existence of three states with a temperature-dependent population and a very limited effect of the temperature on the kinetics for each state.  相似文献   

7.
We have studied the electron transfer reactions from the tetraheme cytochrome of Rhodopseudomonas viridis to the oxidized primary donor in whole cells with a new high sensitivity spectrophotometer. In this apparatus the monochromatic detecting flashes are provided by a YAG pumped Optical Parametric Oscillator, allowing a 10 ns time resolution. When four hemes are reduced the observed electron transfer reaction sequence is the following: first the low-potential c552 heme (the number refers to the maximum absorption wavelength in the alpha-band region) is oxidized with a half time of 130 ns, in agreement with previous reports of measurements performed with purified reaction centers. Then, the electron hole is transferred to the low potential c554 heme with a half time of 2.6 µs. When only the two high potential hemes are reduced the observed electron transfer sequence is the following: oxidation of the high potential c559 heme in the hundreds of ns time range (410 ns), reduction of this heme by the high potential c556 heme in the µs time range (2.7 µs). This confirms the first steps of electron transfer observed in isolated reaction centers. However, in the microsecond time domain, the overall amount of oxidized hemes increases suggesting that, in vivo, the equilibrium constant between the P+/P and the c559ox/c559red couples is significantly lower than expected from the difference in their midpoint potentials.  相似文献   

8.
Magnetic interactions operating between the Chromatium vinosum reaction center associated c-cytochromes and the electron carriers of the reaction center have been assayed by comparing the magnetic properties of these components alone, and in various combinations with paramagnetic forms of the reaction center electron carriers. These studies have yielded the following results. 1. The oxidized paramagnetic forms of the high potential cytochromes c-555 produce no discernable alteration of the light-induced (BChl)2.+signal. 2. Similarly, analysis of the lineshape of the light-induced (BChl)2.+signal shows that a magnetic interaction with the oxidized low potential cytochromes c-553 is likely to produce less than a 1 gauss splitting of the (BChl)2.+signal, which corresponds to a minimum separation of 25 +/- 3 A between the unpaired spins if the heme and (BChl)2 are orientated in a coplanar arrangement, suggesting a minimum separation of 15+/- 3A between the heme edge and the (BChl)2 edge. 3. a prominent magnetic interaction is observed to operate between the cytochrome c-553 and c-555, which results in a 30-35 gauss splitting of these spectra, and suggests an iron to iron separation of about 8 A.4. Magnetic interactions are not observed between the c-cytochromes and the reaction center "primary acceptor" (the iron . quinone complex) nor with the reaction center intermediate electron carrier (which involves bacteriopheophytin) suggesting separations greater than 10 A. 5. Magnetic interactions are not discerned between the two cytochrome c-553 hemes, nor between the two cytochrome c-555 hemes, implying that the distance between the cytochromes of the same pair is greater than 10 A. 6. EPR studies of oriented chromatophores have demonstrated that the cytochrome c-553 and c-555 hemes are perpendicular to each other, and suggest that the cytochrome c-553 heme plane lies parallel to the plane of the membrane, while the cytochrome c-555 heme plane lies perpendicular to the plane of the membrane surface.  相似文献   

9.
Electron transfer from the tetraheme cytochrome c to the special pair of bacteriochlorophylls (P) has been studied by flash absorption spectroscopy in reaction centers isolated from seven strains of the photosynthetic purple bacterium Rhodopseudomonas viridis, where the residue L162, located between the proximal heme c-559 and P, is Y (wild type), F, W, G, M, T, or L. Measurements were performed between 294 K and 8 K, under redox conditions in which the two high-potential hemes of the cytochrome were chemically reduced. At room temperature, the kinetics of P+ reduction include two phases in all of the strains: a dominant very fast phase (VF), and a minor fast phase (F). The VF phase has the following t(1/2): 90 ns (M), 130 ns (W), 135 ns (F), 189 ns (Y; wild type), 200 ns (G), 390 ns (L), and 430 ns (T). These data show that electron transfer is fast whatever the nature of the amino acid at position L162. The amplitudes of both phases decrease suddenly around 200 K in Y, F, and W. The effect of temperature on the extent of fast phases is different in mutants G, M, L, and T, in which electron transfer from c-559 to P+ takes place at cryogenic temperatures in a substantial fraction of the reaction centers (T, 48%; G, 38%; L, 23%, at 40 K; and M, 28%, at 60 K), producing a stable charge separated state. In these nonaromatic mutants the rate of VF electron transfer from cytochrome to P+ is nearly temperature-independent between 294 K and 8 K, remaining very fast at very low temperatures (123 ns at 60 K for M; 251 ns at 40 K for L; 190 ns at 8 K for G, and 458 ns at 8 K for T). In all cases, a decrease in amplitudes of the fast phases is paralleled by an increase in very slow reduction of P+, presumably by back-reaction with Q(A)-. The significance of these results is discussed in relation to electron transfer theories and to freezing at low temperatures of cytochrome structural reorganization.  相似文献   

10.
Specific polyisoprene-cleaving activities of 1.5 U/mg and 4.6 U/mg were determined for purified Strep-tagged latex clearing protein (Lcp) of Streptomyces sp. strain K30 at 23°C and 37°C, respectively. Metal analysis revealed the presence of approximately one atom of iron per Lcp molecule. Copper, which had been identified in Lcp1VH2 of Gordonia polyisoprenivorans previously, was below the detection limit in LcpK30. Heme was identified as a cofactor in purified LcpK30 by (i) detection of characteristic α-, β-, and γ (Soret)-bands at 562 nm, 532 nm, and 430 nm in the visible spectrum after chemical reduction, (ii) detection of an acetone-extractable porphyrin molecule, (iii) determination of a heme b-type-specific absorption maximum (556 nm) after chemical conversion of the heme group to a bipyridyl-heme complex, and (iv) detection of a b-heme-specific m/z value of 616.2 via mass spectrometry. Spectroscopic analysis showed that purified Lcp as isolated contains an oxidized heme-Fe3+ that is free of bound dioxygen. This is in contrast to the rubber oxygenase RoxA, a c-type heme-containing polyisoprene-cleaving enzyme present in Gram-negative rubber degraders, in which the covalently bound heme firmly binds a dioxygen molecule. LcpK30 also differed from RoxA in the lengths of the rubber degradation cleavage products and in having a higher melting point of 61.5°C (RoxA, 54.3°C). In summary, RoxA and Lcp both are equipped with a heme cofactor and catalyze an oxidative C-C cleavage reaction but differ in the heme subgroup type and in several biochemical and biophysical properties. These findings suggest differences in the catalytic reaction mechanisms.  相似文献   

11.
A detailed study of the soluble cytochrome composition of Rhodopseudomonas sphaeroides (ATCC 17023) indicates that there are five c-type cytochromes and one b-type cytochrome present. The molecular weights, heme contents, amino acid compositions, isoelectric points, and oxidation-reduction potentials were determined and the proteins were compared with those from other bacterial sources. Cytochromes c2 and c' have previously been well characterized. Cytochrome c-551.5 is a diheme protein which has a very low redox potential, similar to certain purple bacterial and algal cytochromes. Cytochrome c-554 is an oligomer, which is spectrally similar to the low-spin isozyme of cytochrome c' found in other purple bacteria (e.g., Rhodopseudomonas palustris cytochrome c-556). An unusual high-spin c-type heme protein has also been isolated. It is spectrally distinguishable from cytochrome c' and binds a variety of heme ligands including oxygen. A large molecular-weight cytochrome b-558 is also present which appears related to a similar protein from Rhodospirillum rubrum, and the bacterioferritin from Escherichia coli. None of the soluble proteins appear to be related to the abundant membrane-bound c-type cytochrome in Rps. sphaeroides which has a larger subunit molecular weight similar to mitochondrial cytochrome c1 and chloroplast cytochrome f.  相似文献   

12.
1. The soluble cytochromes c-556 from three strains of Agrobacterium tumefaciens, B6, II Chrys and Apple 185 have been purified to homogeneity. The strains are representative members of the three main genetic races of Agrobacterium. The purity of the final preparations was established by electrophoresis with an without sodium dodecyl sulphate, by analytical isoelectric focusing and ultracentrifugation, and by N-terminal analysis. 2. Properties of these cytochromes were compared wih those of cytochrome c-556 from A. tumefaciens, strain B2a, a member of the same genetic race as strain B6. The four cytochromes are monohaem proteins with molecular weights of about 12300 (determined by four different methods). The isoelectric points of those from strains B6 and B2a are identical at pH 5.5, but they differ from the cytochromes of the other genetic races: cytochrome c-556 from strain Apple 185 is more acidic (ph 5.2) and that from strain II Chrys more basic (pH 6.2). The cytochromes from strains b6 and B2a have very similar but not identical amino acid compositions; both of them differ more from Apple 185 than from II Chrys c-556. 3. Comparison of the tryptic, chymotryptic and thermolytic fingerprints of cytochrome c-556 from strains B2a and II Chrys reveals strong homology between the primary structures of these cytochromes. Therefore and because of the sequence identity of the first eight residues, the cytochromes c-556 from strains II Chrys, B6 and B2a are most likely C-terminal haem-bound, of the same type as the cytochrome c' from photosynthetic bacteria.  相似文献   

13.
Rate constants have been measured for the reactions of a series of high-spin cytochromes c' and their low-spin homologues (cytochromes c-554 and c-556) with the semiquinones of free flavins and flavodoxin. These cytochromes are approximately 3 times more reactive with lumiflavin and riboflavin semiquinones than are the c-type cytochromes that are homologous to mitochondrial cytochrome c. We attribute this to the greater solvent exposure of the heme in the c'-type cytochromes. In marked contrast, the cytochromes c' are 3 orders of magnitude less reactive with flavodoxin semiquinone than are the c-type cytochromes. We interpret this result to be a consequence of the location of the exposed heme in cytochrome c' at the bottom of a deep groove in the surface of the protein, which is approximately 10-15 A deep and equally as wide. While free flavins are small enough to enter the groove, the flavin mononucleotide (FMN) prosthetic group of flavodoxin is apparently prevented by steric constraints from approaching the heme more closely than approximately 10 A without dynamic structural rearrangements. Most cytochromes c' are dimeric, but a few are monomeric. The three-dimensional structure of the Rhodospirillum molischianum cytochrome c' dimer suggests that the heme should be more exposed in the monomer than in the dimer, but no relationship is observed between intrinsic reactivity toward free flavin semiquinones and the aggregation state of the protein. Likewise, there is no evidence that the spin state or ligand field of the iron has any effect on intrinsic reactivity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We have recently demonstrated, using site-directed mutagenesis, that soluble cytochromes interact with the Rubrivivax gelatinosus photosynthetic reaction center (RC) in the vicinity of the low-potential heme 1 (c-551, Em = 70 mV) of the tetraheme cytochrome subunit, the fourth heme from the special pair of bacteriochlorophyll [Osyczka, A., et al. (1998) Biochemistry 37, 11732-11744]. Although the mutations generated in that study did not show clear effects on the electron transfer from high-potential iron-sulfur protein (HiPIP), which is the major physiological electron donor to the RC in this bacterium, we report here that other site-directed mutations near the solvent-exposed edge of the same low-potential heme 1, V67K (valine-67 substituted by lysine) and E79K/E85K/E93K (glutamates-79, -85, and -93, all replaced by lysines), considerably inhibit the electron transfer from HiPIP to the RC. Thus, it is concluded that HiPIP, like soluble cytochromes, binds to the RC in the vicinity of the exposed part of the low-potential heme 1 of the cytochrome subunit, although some differences in the configurations of the HiPIP-RC and cytochrome c-RC transient complexes may be postulated.  相似文献   

15.
In cyanobacteria, the water-soluble cytochrome c-553 functions as a mobile carrier of electrons between the membrane-bound cytochrome b6-f complex and P-700 reaction centers of Photosystem I. The structural gene for cytochrome c-553 (designated cytA) of the cyanobacterium Synechococcus sp. PCC 7942 was cloned, and the deduced amino acid sequence was shown to be similar to known cyanobacterial cytochrome c-553 proteins. A deletion mutant was constructed that had no detectable cytochrome c-553 based on spectral analyses and tetramethylbenzidine-hydrogen peroxide staining of proteins resolved by polyacrylamide gel electrophoresis. The mutant strain was not impaired in overall photosynthetic activity. However, this mutant exhibited a decreased efficiency of cytochrome f oxidation. These results indicate that cytochrome c-553 is not an absolute requirement for reducing Photosystem I reaction centers in Synechococcus sp. PCC 7942.  相似文献   

16.
The coordination of the heme iron in cytochrome c-552 from Euglena gracilis was investigated by 1H NMR studies at 360 MHz. The data imply that the axial heme ligands are His-14 and Met-56 in both the oxidized and the reduced protein. Studies of mixed solutions of ferro- and ferricytochrome c-552, which provided much of the information on the heme structure, also showed that the intermolecular electron exchange is characterized by a bimolecular rate constant of 5-10(6) mol-1-s-1 at 29 degrees C, which is three orders of magnitude faster than the corresponding reaction in solutions of mammalian cytochromes c.  相似文献   

17.
Garcia  D.  Mathis  P.  Verméglio  A. 《Photosynthesis research》1998,55(2-3):331-335
We have analyzed the rate of electron transfer between the tetrahemic cytochrome and the primary electron donor in isolated reaction centers of Roseobacter denitrificans as a function of the ambient redox potential. Three different phases are observed: a slow phase (half-time > ms), and two fast phases with half-times of 5 µs and 380 ns. The slow phase is present at high redox potential, it corresponds to the kinetics of charge recombination between the photo-oxidized primary electron acceptor P+ and the reduced primary acceptor (Q A ). The 5 µs phase titrates with the reduction of the highest potential heme (HP1). This phase corresponds to the electron transfer between heme HP1 and P+. At redox potentials where the second high potential heme HP2 becomes reduced, the 5 µs phase disappears and is replaced by the 380 ns phase, which is therefore related to the electron transfer between the high potential heme HP2 and P+. To explain the large difference in the rate of oxidation of HP1 and HP2 we propose a tentative model where the heme HP2 is closest to P.  相似文献   

18.
Cytochrome b556, a major component of type b cytochromes in the respiratory chain of aerobically grown Escherichia coli, was purified to near homogeneity. It was solubilized from cytoplasmic membranes by treatment with Sarkosyl/cholate mixture and purified by gel filtration on Sephadex G-200. The purified cytochrome b556 is an oligomer composed of identical polypeptides, with a molecular weight of 17,500, determined by gel electrophoresis in the presence of sodium dodecyl sulfate. It contains equimolar amounts of heme and polypeptide but no detectable non-heme iron, phospholipid, or dehydrogenase. Its isoelectric point was determined to be 8.5. The cytochrome b556 is highly hydrophobic in its amino acid composition and does not contain any half-cystine residues. The purified cytochrome b556 is spectrophotometrically pure and the alpha absorption peak in its difference spectrum at 77 K is at 556 nm. The molar extinction coefficient of cytochrome b556 was determined as 22.8 cm-1 mM-1. Its oxidation-reduction potential was found to be -45 mV. It could be reduced by D-lactate dehydrogenase of E. coli in the presence of menadione.  相似文献   

19.
Succinate-ubiquinone oxidoreductase (SdhCDAB, complex II) from Escherichia coli is a four-subunit membrane-bound respiratory complex that catalyzes ubiquinone reduction by succinate. In the E. coli enzyme, heme b(556) is ligated between SdhC His(84) and SdhD His(71). Contrary to a previous report (Vibat, C. R. T., Cecchini, G., Nakamura, K., Kita, K., and Gennis, R. B. (1998) Biochemistry 37, 4148-4159), we demonstrate the presence of heme in both SdhC H84L and SdhD H71Q mutants of SdhCDAB. EPR spectroscopy reveals the presence of low spin heme in the SdhC H84L (g(z) = 2.92) mutant and high spin heme in the SdhD H71Q mutant (g = 6.0). The presence of low spin heme in the SdhC H84L mutant suggests that the heme b(556) is able to pick up another ligand from the protein. CO binds to the reduced form of the mutants, indicating that it is able to displace one of the ligands to the low spin heme of the SdhC H84L mutant. The g = 2.92 signal of the SdhC H84L mutant titrates with a redox potential at pH 7.0 (E(m)(,7)) of approximately +15 mV, whereas the g = 6.0 signal of the SdhD H71Q mutant titrates with an E(m)(,7) of approximately -100 mV. The quinone site inhibitor pentachlorophenol perturbs the heme optical spectrum of the wild-type and SdhD H71Q mutant enzymes but not the SdhC H84L mutant. This finding suggests that the latter residue also plays an important role in defining the quinone binding site of the enzyme. The SdhC H84L mutation also results in a significant increase in the K(m) and a decrease in the k(cat) for ubiquinone-1, whereas the SdhD H71Q mutant has little effect on these parameters. Overall, these data indicate that SdhC His(84) has an important role in defining the interaction of SdhCDAB with both quinones and heme b(556).  相似文献   

20.
The membrane-bound photooxidizable cytochrome c-554 from Chloroflexus aurantiacus has been purified. The purified protein runs as a single heme staining band on SDS-PAGE with an apparent molecular mass of 43 000 daltons. An extinction coefficient of 28 ± 1 mM–1 cm–1 per heme at 554 nm was found for the dithionite-reduced protein. The potentiometric titration of the hemes takes place over an extended range, showing clearly that the protein does not contain a single heme in a well-defined site. The titration can be fit to a Nernst curve with midpoint potentials at 0, +120, +220 and +300 mV vs the standard hydrogen electrode. Pyridine hemochrome analysis combined with a Lowry protein assay and the SDS-PAGE molecular weight indicates that there are a minimum of three, and probably four hemes per peptide. Amino acid analysis shows 5 histidine residues and 29% hydrophobic residues in the protein. This cytochrome appears to be functionally similar to the bound cytochrome from Rhodopseudomonas viridis. Both cytochrome c-554 from C. aurantiacus and the four-heme cytochrome c-558-553 from R. viridis appear to act as direct electron donors to the special bacteriochlorophyll pair of the photosynthetic reaction center. They have a similar content of hydrophobic amino acids, but differ in isoelectric point, thermodynamic characteristics, spectral properties, and in their ability to be photooxidized at low temperature.Abbreviations LDAO lauryl dimethyl amine-N-oxide - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - mV millivolt - Em.8 midpoint potential at pH 8.0 - ODV optical density x volume in ml  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号