首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 234 毫秒
1.
Small DH 《Peptides》2002,23(7):1317-1321
The beta- and gamma-secretases cleave the amyloid protein precursor (APP) to release the amyloid protein (Abeta). While the beta-secretase has now been identified, the gamma-secretase remains an enigma. A number of mutations in the presenilins (PS) and APP have been shown to alter the cleavage specificity of gamma-secretase. However, the relationship between PS and gamma-secretase remains unclear. This article presents some models of gamma-secretase and suggests that the simplest interpretation of current data is that gamma-secretase is a complex of several proteases located in the lumen of secretory vesicles.  相似文献   

2.
gamma-Secretase cleavage of the amyloid precursor protein already subjected to a prior beta-secretase cleavage generates beta-amyloid (Abeta) peptide fragments, which are major constituents of the amyloid plagues found in Alzheimer's disease brain tissues. gamma-Secretase activity and components of the gamma-secretase complex are found in the endoplasmic reticulum-Golgi intermediate compartment, the Golgi, the trans-Golgi network, the plasma membrane, the endosomal-lysosomal system and recently, the mitochondria. Abeta fragments have been shown to be neurotoxic, leading to mitochondrial dysfunction and enhanced apoptotic cell death. However, if Abeta fragments are indeed detrimental to neurons, the widespread presence of enzymatic activity that would result in their generation in the cell appears to make little sense. The presence of a gamma-secretase complex in the mitochondrion, an organelle that is particularly susceptible to Abeta toxicity, is even more puzzling. Emerging evidence suggests that both secreted and intracellular Abeta fragments have endogenous functions. Also, while the fibrillogenic Abeta1-42 is clearly neurotoxic, the more abundant and soluble Abeta1-40 is an antioxidant and could potentially be neuroprotective in several ways. A "physiological" amount of Abeta1-40 production by cellular gamma-secretase activity may be part of the neuron's natural counter against oxidative damage, in addition to endogenous roles in neuronal survival and modulation of synaptic transmission. In any case, whether Abeta is produced locally in the mitochondria and the function for mitochondrial Abeta, if produced, is yet unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号