首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
DNA sequence for the T7 RNA polymerase promoter for T7 RNA species II   总被引:2,自引:0,他引:2  
The DNA sequence for the T7 late region class III promoter for T7 RNA species II has been determined. I have found that the DNA sequence for this promoter presented in an earlier report (Oakley et al., 1979) is incorrect and that this class III promoter contains a 23 base-pair sequence identical to those present in all other T7 class III promoters (Rosa, 1979). The T7 RNA species II promoter has been located at 68% on the T7 genome.  相似文献   

6.
7.
The central part of bacteriophage T4 baseplate is built of several proteins which are present in only a few copies per phage particle. Only some of these minor baseplate components have been identified previously as distinct protein species by biochemical analysis. We have used the bacteriophage T7 RNA polymerase expression system to identify and overexpress the minor baseplate proteins. The products of genes 25, 26 and 51 were identified on the autoradiographs after selective labelling with [35]S methionine. The overexpression of gene 25 and 51 products was high enough to make possible undertaking their purification and studies of their properties.  相似文献   

8.
9.
The bacteriophage T3 and T7 RNA polymerases (RNAP) are closely related, yet exhibit high specificity for their own promoter sequences. In this work the primary determinant of T7 versus T3 promoter specificity has been localized to a single amino acid residue at position 748 in the T7 RNAP. Substitution of this residue (Asn) with the corresponding residue found in T3 RNAP (Asp) results in a switch in promoter specificity, and specifically alters recognition of the base pairs (bp) at positions -11 and, possibly, -10 in the promoter. A complementary mutation in T3 RNAP (T3-D749N) results in a similar switch in promoter preference for that enzyme. The hierarchy of bp preference by the mutant and wild-type enzymes for bp at -10 and -11, and the results of previous experiments, lead to a model for specificity in which it is proposed that N748 in T7 RNAP (and D749 in T3 RNAP) make specific hydrogen bonds with bases at -11 and -10 on the non-template strand in the major groove. The specificity determining region of T7 RNAP does not appear to exhibit homology to any known sequence-dependent DNA binding motif.  相似文献   

10.
11.
12.
The interactions of T7 RNA polymerase with its promoter DNA have been previously probed in footprinting experiments with either DNase I or (methidiumpropyl-EDTA)-Fe(II) to cleave unprotected DNA [Basu, S., & Maitra, U. (1986) J. Mol. Biol. 190, 425-437. Ikeda, R. A., & Richardson, C. C. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 3614-3618]. Both of these reagents have drawbacks; DNase I is a bulky reagent and so provides low resolution, and (methidiumpropyl-EDTA)-Fe(II) intercalates into DNA and is therefore biased toward cleavage of double-stranded DNA. In this study, the interaction between the polymerase and the promoter has been probed with Fe(II)-EDTA. This reagent generates reactive hydroxyl radicals free in solution, which produces a more detailed picture of the polymerase-promoter complex. Two protected regions are observed on each of the two promoter DNA strands: from position -17 to position -13 and from position -7 to position -1 on the coding strand and from position -14 to position -9 and from position -3 to position +2 on the noncoding strand. From this pattern it is clear that if recognition occurs via double-stranded B-form DNA, then the protected regions lie on one face of the DNA helix, and therefore the enzyme must interact predominantly from one side of the DNA helix. Digestion of the DNA in a polymerase-promoter complex with a single-strand-specific endonuclease shows that a small region of the noncoding strand near position -5 is susceptible to cleavage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
An IPTF-regulated broad host range expression system was constructed using compatible broad host range plasmids, the T7 RNA polymerase, and T7 promoter sequences. The system is implemented by the coexistence of two plasmids. The first contains the T7 RNA polymerase gene under the control of lacl or lacl(q) genes and lacUV5 promoter. The second encodes the T7 promoter upstream of a multicloning site. IncP1 or IncP4 T7 promoter plasmids, and IncP1, IncP4 or IncW T7 RNA polymerase plasmids were constructed. The expression from the IncP1 promoter plasmids in the presence of the IncP4 polymerase plasmids was tested by in vivo lacZ fusions and vivo labeling of proteins. In this combination, the use of lac(q) improves the regulation levels in Escherichia coli, whereas, in Pseudomonas phaseolicola, a 28.5-fold regulation was obtained with lacl, Although the level of lacZ expression from the T7 promoter in P. phaseolicola is low compared with E. coli, it is similar to levels obtained with the pm promoter in Pseudomonas putida when the differences in the copy number of the expression vectors are taken into consideration (c) 1993 Wiley & Sons, Inc.  相似文献   

14.
The 50-residue major coat protein (MCP) of Ff bacteriophage exists as a single-spanning membrane protein in the Escherichia coli host inner membrane prior to assembly into lipid-free virions. Here, the molecular bases for the specificity and stoichiometry that govern the protein-protein interactions of MCP in the host membrane are investigated in detergent micelles. To address these structural issues, as well as to circumvent viability requirements in mutants of the intact protein, peptides corresponding to the effective alpha-helical TM segment of wild-type and mutant bacteriophage MCPs were synthesized. Fluorescence resonance energy transfer (FRET) experiments on the dansyl and dabcyl-labeled MCP TM domain peptides in detergent micelles demonstrated that the peptides specifically associate into non-covalent homodimers, as postulated for the biologically relevant membrane-embedded MCP oligomer. MCP peptides labeled with short-range pyrene fluorophores at the N terminus displayed excimer fluorescence consistent with homodimerization occurring in a parallel fashion. Variant peptides synthesized with single substitutions at helix-interactive positions displayed a wide range of dimer/monomer ratios on SDS-PAGE gels, which are interpreted in terms of steric volume, presence or absence of beta-branching, and the effect of polar substituents. The overall results indicate discrete roles for helix-helix interfacial residues as packing recognition elements in the membrane-inserted state, and suggest a possible correlation between phage viability and efficacy of MCP TM-TM interactions.  相似文献   

15.
The coding sequence for bacteriophage T7 RNA polymerase has been cloned and expressed under control of a cognate T7 promoter, a configuration referred to as an autogene. Cloning a T7 autogene in a derivative of plasmid pBR322 in Escherichia coli was achieved by a combination of blocking initiation at the T7 promoter with bound lac repressor and inhibiting the polymerase itself by T7 lysozyme. Neither type of inhibition by itself was sufficient to control the autogene. Upon unblocking the T7 promoter with added inducer. T7 RNA polymerase produced its own mRNA, leading to autocatalytic production of polymerase protein. T7 autogenes may be useful for developing high-level gene expression systems in a variety of cell types, with little if any need for the host cell RNA polymerase.  相似文献   

16.
17.
18.
19.
20.
Escherichia coli RNA polymerase holoenzyme bound to promoter sites on T7 DNA is attacked and inactivated by the polyanion heparin. The highly stable RNA polymerase-T7 DNA complex formed at the major T7 A1 promoter can be completely inactivated by treatment with heparin, as shown by monitoring the loss of activity of such complexes, and by gel electrophoresis of the RNA products transcribed. The rate of this inactivation is much faster than the rate of dissociation of RNA polymerase from promoter complexes, and thus represents a direct attack of heparin on the polymerase molecule bound at promoter A1. Experiments employing the nitrocellulose filter binding technique suggest that heparin inactivates E. coli RNA polymerase when bound to T7 DNA by directly displacing the enzyme from the DNA. RNA polymerase bound at a minor T7 promoter (promoter C) is much less sensitive to heparin attack than enzyme bound at promoter A1. Thus, the rate of inactivation of RNA polymerase-T7 DNA complexes by heparin is dependent upon the structure of the promoter involved even though the inhibitor binds to a site on the enzyme molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号