首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ishihata A  Sakai M  Katano Y 《Peptides》2006,27(1):80-86
To elucidate whether aging influences the vascular contractile effect of urotensin II in rat thoracic aorta, and to evaluate the contribution of endothelial vasodilating substances in mediating the effect of urotensin II, the effect of urotensin II was examined in the vessels of young (2-3-month-old) and aged rat. Isolated rat aortic rings incubated in Krebs-Henseleit solution gassed with 95% O2/5% CO2 were stimulated with urotensin II, and the developed tension was measured. Urotensin II increased the developed tension, which was decreased by aging. In 2-3-months-old young aorta without endothelium, urotensin II (10(-10) to 10(-7)) elicited a concentration-dependent aortic contraction to the maximal response almost equivalent to high KCl-induced contraction (79.4+/-11.3% of KCl(max)). In the presence of endothelium, the urotensin II-induced vasoconstriction in young aorta was significantly attenuated to 33.3+/-4.6% of KCl(max). However, the contractile response was greater in the pretreatment with N(G)-nitro-L-arginine (L-NNA) (100 microM) (50.3+/-8.4% of KCl(max) in endothelial denuded aorta), suggesting the vasorelaxing role of endothelial nitric oxide. In 25-27-months-old aged rat aorta, the urotensin II-mediated contraction was remarkably decreased, both in the presence (6.3+/-2.0% of KCl(max)) and absence (11.7+/-3.0% of KCl(max)) of endothelium. A cyclooxygenase inhibitor, diclofenac (10 microM), did not have any effect on the urotensin II-induced contraction. These results suggest that urotensin II can induce vascular smooth muscle contraction in rat aorta, and there was an aging-related decline in the urotensin II-induced contraction. Endothelial production of nitric oxide in response to urotensin II but not cyclooxygenase metabolites such as prostacyclin may play a role in reducing the vascular constriction especially in young aorta.  相似文献   

2.
The present experiments were designed to evaluate vascular reactivity to angiotensin II in rats with experimental cirrhosis of the liver (induced with CCl4 and phenobarbital) before ascites appearance. The systemic pressor response to angiotensin II in conscious animals and the contractile effect of angiotensin II in isolated femoral arteries were studied. In addition, the effect of high sodium intake on these parameters was also analyzed. Both renin and aldosterone plasma concentrations were similar in control and cirrhotic rats on the normal or on the high sodium diet. Basal mean arterial pressure was higher in control rats than in cirrhotic rats on the normal sodium (116 +/- 4 vs. 101 +/- 4 mmHg (1 mmHg = 133.3 Pa), p less than 0.05) or on the high sodium diet (118 +/- 7 vs. 98 +/- 6 mmHg). No differences in plasma renin activity or plasma aldosterone were found between control and cirrhotic rats. Upon injection of angiotensin II, control rats show a dose-dependent increase in mean arterial pressure which is higher in high sodium than in normal sodium rats. Cirrhotic rats showed a lower hypertensive response to angiotensin II than their corresponding control rats. In addition, no difference between pressor responses to angiotensin II was observed when normal sodium and high sodium cirrhotic rats were compared. On application of angiotensin II, femoral arteries of control and cirrhotic rats exhibited a dose-dependent contraction. However, maximal contraction was higher in high sodium control rats (145 +/- 12 mg) than in normal sodium control rats (99 +/- 6 mg, p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Angiotensin-induced prostaglandin release has been implicated in the development of tachyphylaxis to angiotensin in vitro. Based on these findings and evidence that prostaglandins modulate the angiotensin response locally, experiments were done to investigate the role of prostaglandins in the systemic tachyphylaxis to angiotensin. Rats were given intravenous infusions of 1-asparaginyl-5-valyl and 1-aspartyl-5-isoleucyl angiotensin II at two different doses. Using systemic blood pressure as a parameter, varying degrees of tachyphylaxis were produced and the aspartyl analog was found to be more tachyphylactic. When rats were given indomethacin, a prostaglandin synthesis inhibitor, the response to intravenous infusion of aspartyl angiotensin was not significantly altered.  相似文献   

4.
The objective of this study was to determine whether arachidonate metabolites are involved in the vasoconstrictive effects of angiotensin II in rats. In the isolated perfused heart, dexamethasone (4 mg/kg) significantly suppressed the maximal decreases in coronary flow induced by angiotensin II and vasopressin (reference drug). In the heart, the nonselective lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA, 1 muM) markedly suppressed the angiotensin II-induced decreases in coronary flow. NDGA (10 muM) inhibited both angiotensin II- and methoxamine- (reference drug) induced contractions in aortic rings with (in the presence of L-NAME) and without endothelium. In the heart, the leukotriene synthesis inhibitor MK-886 (0.3 muM) significantly reduced the maximal effects to angiotensin II, but the leukotriene antagonist FPL 55712 (0.1 and 0.3 muM) had no effect. We conclude that in the isolated perfused rat heart angiotensin II-induced decreases in coronary flow are in part mediated by Hpoxygenase products, which might be derived from the 5-Hpoxygenase pathway, but are probably not leukotrienes. Furthermore, endothelium independent Hpoxygenase products mediate part of the contractile responses to angiotensin II in the isolated rat aorta.  相似文献   

5.
The aim of this study was to characterize the role of the endothelium in angiotensin II-desensitization and its mechanisms of action. Rabbit aortic rings were exposed to increasing doses of angiotensin II (Ang II, 10(-9) to 2.5 x 10(-6)) to generate two cumulative dose-response curves (CDRC I and II). A 50-min interval separated CDRC I and II. Desensitization was observed at all doses in unrubbed aortic tissue and at lower doses in rubbed aortic tissue. Tachyphylaxis was greater in arteries with endothelium. Treatment of intact rings with L-N(G)-nitroarginine methyl ester (L-NAME, 10(-4) M) did not prevent this phenomenon. However, indomethacin (10(-5) M) and miconazol (10(-6) M) attenuated Ang II-desensitization. Treatment of unrubbed rings with nifedipine (10(-6) M) and cromakalim (10(-6) M) inhibited the effect of indomethacin. To confirm the involvement of K+ channels, unrubbed and rubbed aortic rings were treated with the K(Ca2+) blockers apamin (10(-7) M), tetraethylammonium (TEA, 10(-3) M), and iberiotoxin (10(-8) M), and the K(ATP) blocker glibenclamide (10(-5) M). In both arteries apamin, TEA, and glibenclamide abolished the tachyphylaxis without changes in the maximal response. Iberiotoxin diminished Ang II-desensitization in rubbed but not unrubbed arteries. Results from this study suggest that Ang II-desensitization involves endothelium-dependent and -independent mechanisms. Endothelium-dependent desensitization could be mediated by a cyclooxygenase-cytochrome P450 product, which could act by increasing K(Ca2+) channel activity.  相似文献   

6.
Homocyst(e)ine impairs endocardial endothelial function   总被引:3,自引:0,他引:3  
Homocyst(e)ine injured vascular endothelium and modulated endothelial-dependent vascular function. Endothelium plays an analogous role in both the vessel and the endocardium. Therefore, we hypothesized that homocyst(e)ine modulated endocardial endothelium (EE) dependent cardiac function. The ex vivo cardiac rings from normal male Wistar-Kyoto rats were prepared. The contractile responses of left and right ventricular rings were measured in an isometric myobath, using different concentrations of CaCl2. The response was higher in the left ventricle than right ventricle and was elevated in endocardium without endothelium. The half effective concentration (EC50) and maximum tension generated by homocyst(e)ine were 10(6) and 5-fold lower than endothelin (ET) and angiotensin II (AII), respectively. However, in endothelial-denuded endocardium, homocyst(e)ine response was significantly increased (p<0.005, compared with intact endothelium) and equal to the response to ET and AII. To determine the physiological significance of ET, AII, homocyst(e)ine, and endothelial nitric oxide in EE function, cardiac rings were pretreated with AII (10(-10) M) or ET (10(-13) M) and then treated with homocyst(e)ine (10(-8) M). Results suggested that at these concentrations AII, ET, or homocyst(e)ine alone had no effect on cardiac contraction. However, in the presence of 10(-10) M AII or 10(-13) M ET, the cardiac contraction to homocyst(e)ine (10(-8) M) was significantly enhanced (p<0.01, compared with without pretreatment) and further increased in the endocardium without endothelium. The pretreatment of cardiac ring with the inhibitor of nitric oxide, Nomega-nitro-L-arginine methyl ester (L-NAME), increased contractile response to homocyst(e)ine. These results suggested that homocyst(e)ine impaired EE-dependent cardiac function and acted synergistically with AII and ET in enhancing the cardiac contraction.  相似文献   

7.
Selected parameters of cardiovascular function were evaluated in vitamin A-deficient rats at 70 days of age. Resting heart rate was increased by an average of 100 bpm (21.4+/-2.7%), whereas resting systolic blood pressure was normal in vitamin A-deficient animals. The maximal contractile force developed per milligram weight of tissue by aortic rings excised from vitamin A-deficient animals was reduced in response to high potassium (-25.0+/-8.7%) and phorbol 12,13-dibutyrate (-36.8+/-8.4%) but was only slightly reduced in response to norepinephrine (-17.8+/-11.1%). Intimal rubbing to remove the endothelium had no effect on the loss in contractile responsiveness, and the relaxant response to acetylcholine was similar between control and vitamin A-deficient tissue groups. This suggests that the decrease in contractility of vascular smooth muscle from the vitamin A-deficient rats did not involve altered release of endothelium-derived vasoactive factors. Western blot analysis suggested a reduction in the protein levels of several differentiation markers including alpha-actin (-22%), calponin (-37%), desmin (-37%), and vinculin (-40%), whereas the level of PKCalpha was unchanged from control values. Our findings indicate a significant decrease in contractile responsiveness of aortic smooth muscle of the vitamin A-deficient rat that may be associated with a down regulation in the expression of contractile-related proteins.  相似文献   

8.
The contractile function of renal glomerulus was studied in vitro using isolated glomeruli from streptozotocin-diabetic rats. Glomerular contraction was assessed by the reduction of extracellular [3H]inulin space of glomerulus, mostly composing of intracapillary space, produced by angiotensin II. The inulin space was dose-dependently reduced after angiotensin II addition in both diabetic and control rats but the degree of reduction significantly smaller in the former. The radioreceptor assay revealed rather increased angiotensin II receptors in diabetic glomeruli. Since the contractile response of glomerulus to angiotensin II is mediated via mesangial cell contraction, these results suggest the presence of mesangial cell dysfunction in diabetes.  相似文献   

9.
The role of nitric oxide (NO) on the vasorelaxant effect of atrial natriuretic peptide (ANP) on the basal tone of rabbit aortic rings conditioned to angiotensin II (Ang II) was studied. ANP aortic relaxation and nitrite release were measured in the presence and absence of endothelium and a NO-synthase inhibitor. Ang II at 10(-8) M triggered a contractile response, conditioning the vessel to a vasorelaxant effect of ANP (10(-8) M). This effect was significantly enhanced by endothelium removal, NG-nitro-L-arginine methyl ester (L-NAME, 10(-4) M), and methylene blue (10(-5) M). ANP decrease of basal tone in Ang-II-sensitized aortic rings was improved when a higher concentration of Ang II was used (l0(-6) M). Basal and Ang-II-stimulated nitrite release were measured in stretched (S) and nonstretched (NS) aortic rings. Nitrite release was significantly increased in S rings (p < 0.001). L-NAME (10(-4) M) partially inhibited nitrite release in both basal and Ang-II-stimulated S aortic rings. In NS aortic rings, the NO inhibitor did not inhibit basal nitrite release but blunted the Ang-II-stimulated nitrite level. A significant negative correlation between nitrite release and the ANP vasorelaxant effect on basal tone was dependent on the Ang-II-sensitizing dose. The present results demonstrate that ANP relaxant effects on aortic basal tone are related to NO levels, which are regulated by S- and Ang-II-concentration-dependent NO generation and quenching.  相似文献   

10.
Preincubation with physiological concentrations of insulin affects contractile reactivity of isolated smooth muscle cells. We studied the effects of insulin on intact aortic rings of Wistar rats preincubated 1-2 h with 240 pM (I1) and 960 pM (I2) insulin with and without NO synthesis inhibition by N(omega)-nitro-L-arginine methyl ester (L-NAME). Resting force was tripled by 0.1 mM L-NAME in control (C) and I1 groups, but not in I2 groups. I1 treatment decreased the tachyphylaxis to two successive 1 microM arginine vasopressin (AVP) stimulations. Single contractions elicited by 1 microM AVP, 1 microM angiotensin II (AngII), or 0.01 microM endothelin (ET1) were not affected by insulin preincubation in either maximal force (Fmax) or relaxation times. L-NAME enhanced Fmax of AngII contractions by about 75% in C, 120% in I1, and 74% in I2 groups; accordingly, it augmented the final steady-state force in C and I1 but not in I2. Similarly, L-NAME increased Fmax (30-40%) of AVP and ET1 contractions in C and I1 groups but failed to do so in contractions of I2 group. Results obtained with 10 microM indomethacin suggest that this is due to insulin stimulation of prostacyclin effects.  相似文献   

11.
Dose-response (DR) curves for several angiotensin analogs were examined on isolated rabbit detrusor strips with washout and rest between each addition. The order of potency was [Val5]-angiotensin II greater than [Ile5]-angiotensin II greater than [Ile5]-angiotensin I greater than [Val4]-angiotensin III. Repeated cumulative DR to [Val5]-AII resulted in a gradual increase in potency and intrinsic activity for four DR. However, the maximum force generated occurred at lower agonist concentrations and was less than that of the single methods, suggesting tachyphylaxis. Atropine (1.0 microM) shifted the cumulative DR curve downward, suggesting some cholinergic component possibly involving a presynaptic site of action. The magnitude of field-stimulated atropine-resistant contractions was reduced by both 1.0 and 10 microM saralasin as well as 10 microM naloxone. Tissue binding with 125I-labelled angiotensin II on isolated detrusor smooth muscle membranes indicated specific binding saturation occurred at 14.3 fmol/mg with a KD of 0.72 nM in EDTA-Tris buffered saline. Thus our results show that angiotensin II (AII) receptors can be demonstrated in destrusor muscle by ligand binding experiments on cell membranes and that saralasin and naloxone partially block atropine-resistant contractions. However, it seems unlikely that AII serves as a neurotransmitter because of the delay in onset of action of exogenous AII in isolated bath experiments and the apparent inability of saralasin to totally abolish the atropine-resistant field-stimulated preparation. If AII serves a role in neurotransmission it most probably is as a neuromodulator.  相似文献   

12.
Hypertension is considered as a low-grade inflammatory disease, with adaptive immunity being an important mediator of this pathology. TLR4 may have a role in the development of several cardiovascular diseases; however, little is known about its participation in hypertension. We aimed to investigate whether TLR4 activation due to increased activity of the renin-angiotensin system (RAS) contributes to hypertension and its associated endothelial dysfunction. For this, we used aortic segments from Wistar rats treated with a non-specific IgG (1 µg/day) and SHRs treated with losartan (15 mg/kg·day), the non-specific IgG or the neutralizing antibody anti-TLR4 (1 µg/day), as well as cultured vascular smooth muscle cells (VSMC) from Wistar and SHRs. TLR4 mRNA levels were greater in the VSMC and aortas from SHRs compared with Wistar rats; losartan treatment reduced those levels in the SHRs. Treatment of the SHRs with the anti-TLR4 antibody: 1) reduced the increased blood pressure, heart rate and phenylephrine-induced contraction while it improved the impaired acetylcholine-induced relaxation; 2) increased the potentiation of phenylephrine contraction after endothelium removal; and 3) abolished the inhibitory effects of tiron, apocynin and catalase on the phenylephrine-induced response as well as its enhancing effect of acetylcholine-induced relaxation. In SHR VSMCs, angiotensin II increased TLR4 mRNA levels, and losartan reduced that increase. CLI-095, a TLR4 inhibitor, mitigated the increases in NAD(P)H oxidase activity, superoxide anion production, migration and proliferation that were induced by angiotensin II. In conclusion, TLR4 pathway activation due to increased RAS activity is involved in hypertension, and by inducing oxidative stress, this pathway contributes to the endothelial dysfunction associated with this pathology. These results suggest that TLR4 and innate immunity may play a role in hypertension and its associated end-organ damage.  相似文献   

13.
Pendrin is a Cl/HCO3 exchanger expressed in the apical regions of renal intercalated cells. Following pendrin gene ablation, blood pressure falls, in part, from reduced renal NaCl absorption. We asked if pendrin is expressed in vascular tissue and if the lower blood pressure observed in pendrin null mice is accompanied by reduced vascular reactivity. Thus, the contractile responses to KCl and phenylephrine (PE) were examined in isometrically mounted thoracic aortas from wild-type and pendrin null mice. Although pendrin expression was not detected in the aorta, pendrin gene ablation changed contractile protein abundance and increased the maximal contractile response to PE when normalized to cross sectional area (CSA). However, the contractile sensitivity to this agent was unchanged. The increase in contractile force/cross sectional area observed in pendrin null mice was due to reduced cross sectional area of the aorta and not from increased contractile force per vessel. The pendrin-dependent increase in maximal contractile response was endothelium- and nitric oxide-independent and did not occur from changes in Ca2+ sensitivity or chronic changes in catecholamine production. However, application of 100 nM angiotensin II increased force/CSA more in aortas from pendrin null than from wild type mice. Moreover, angiotensin type 1 receptor inhibitor (candesartan) treatment in vivo eliminated the pendrin-dependent changes contractile protein abundance and changes in the contractile force/cross sectional area in response to PE. In conclusion, pendrin gene ablation increases aorta contractile force per cross sectional area in response to angiotensin II and PE due to stimulation of angiotensin type 1 receptor-dependent signaling. The angiotensin type 1 receptor-dependent increase in vascular reactivity may mitigate the fall in blood pressure observed with pendrin gene ablation.  相似文献   

14.
Tan LM  Sim MK 《Life sciences》2000,66(19):1839-1847
The presence of the angiotensin AT1A-like receptor subtype in the pulmonary artery and AT1B-like receptor subtype in the pulmonary trunk of the rabbit has been reported in two earlier studies. The present study further investigated these receptor subtypes using five other angiotensins (namely angiotensin II, angiotensin III, angiotensin IV, angiotensin-(1-7) and angiotensin-(4-8)). The direct action of the angiotensins on the rabbit pulmonary arterial and trunk sections and the ability of each angiotensin to further contract or relax preconstricted sections of the pulmonary artery and trunk were studied using the organ bath set-up. The effects of angiotensin III on the 3H overflow from re-uptaken [3H]noradrenaline in the electrically-contracted rabbit pulmonary arterial and trunk sections were also studied. The contractile response of the arterial and trunk section had the following rank order potency: angiotensin II > angiotensin III > angiotensin IV. The contractile response to these angiotensins was greatly reduced or absent in the pulmonary trunk. Angiotensin II further contracted the preconstricted arterial and trunk sections. In contrast, angiotensin III further contracted the preconstricted arterial section but relaxed the preconstricted trunk section. Angiotensin IV similarly relaxed the preconstricted trunk section but had minimum effect on the preconstricted arterial section. Angiotensin-(1-7) and angiotensin-(4-8) had no effect on both sections. The actions of the three angiotensins were inhibited by losartan, an AT1-selective antagonist. Indomethacin, a cyclo-oxygenase inhibitor, inhibited the relaxation caused by angiotensin III and angiotensin IV in the trunk section. The effects of angiotensin III on the electrically preconstricted sections of the pulmonary trunk and artery were not accompanied by any significant changes in 3H overflow. The differential responses produced by angiotensin II and its immediate metabolites via two positionally located and functionally opposing receptor subtypes suggest that the pulmonary trunk and artery is not a passive conduit but an important regulator of blood flow from the heart to the lung.  相似文献   

15.
1. The vasorelaxant effect of synthetic atrial natriuretic peptide (ANP) on the vascular response to angiotensin II (A II) and norepinephrine (NE) in aortic rings from Bufo arenarum toad was studied. 2. Pretreatment with ANP partially inhibited the vascular response to A II and NE. 3. Angiotensin converting enzyme inhibitor (ACEI) treatment partially inhibited the contractile response of angiotensin I (A I) and did not affect the A II response. 4. The inhibitory effect of ANP on vascular response to A II and NE were potentiated by pretreatment with ACEI. 5. Results suggest that the angiotensin converting enzyme present in the vascular wall from Bufo arenarum toad may be involved in the metabolism of ANP.  相似文献   

16.
Endothelial cells express a constitutively active phagocyte-type NADPH oxidase whose activity is augmented by agonists such as angiotensin II. We recently reported (Li, J.-M., and Shah, A. M. (2002) J. Biol. Chem. 277, 19952-19960) that in contrast to neutrophils a substantial proportion of the NADPH oxidase in unstimulated endothelial cells exists as preassembled intracellular complexes. Here, we investigate the mechanism of angiotensin II-induced endothelial NADPH oxidase activation. Angiotensin II (100 nmol/liter)-induced reactive oxygen species production (as measured by dichlorohydrofluorescein fluorescence or lucigenin chemiluminescence) was completely absent in coronary microvascular endothelial cells isolated from p47(phox) knockout mice. Transfection of p47(phox) cDNA into p47(phox-/-) cells restored the angiotensin II response, whereas transfection of antisense p47(phox) cDNA into wild-type cells depleted p47(phox) and inhibited the angiotensin II response. In unstimulated human microvascular endothelial cells, there was significant p47(phox)-p22(phox) complex formation but minimal detectable p47(phox) phosphorylation. Angiotensin II induced rapid serine phosphorylation of p47(phox) (within 1 min, peaking at approximately 15 min), a 1.9 +/- 0.1-fold increase in p47(phox)-p22(phox) complex formation and a 1.6 +/- 0.2-fold increase in NADPH-dependent O(2)-* production (p < 0.05). p47(phox) was redistributed to "nuclear" and membrane-enriched cell fractions. These data indicate that angiotensin II-stimulated endothelial NADPH oxidase activity is regulated through serine phosphorylation of p47(phox) and its enhanced binding to p22(phox).  相似文献   

17.
A Nakamura  H Iwao  K Fukui  S Kimura  T Tamaki  Y Abe 《Life sciences》1990,46(23):1657-1660
The present study was performed to examine the effect of angiotensin II on hepatic angiotensinogen production in adrenalectomized rats. The hepatic angiotensinogen mRNA levels in rats without adrenal glands increased 2.8-fold 4 h after the start of angiotensin II infusion. In intact rats with adrenal glands, the hepatic angiotensinogen mRNA levels increased 2.7-fold 4 h after the start. The angiotensin II infusions did not only increase angiotensinogen mRNA levels in intact rats but also increased those in adrenalectomized rats. The results suggest that the angiotensinogen response to ANG II was not dependent on adrenal glucocorticoid.  相似文献   

18.
We examined the effect of dietary manganese (Mn) on the vascular contractile machinery in rat thoracic aortas. Weanling male Sprague-Dawley rats were fed either an Mn-deficient (MnD), Mn-adequate (MnA) or Mn-supplemented (MnS) diet (<1, 10-15 and 45-50 ppm Mn, respectively). After 15 weeks on the diets the rats were sacrificed and 3-mm aortic rings were contracted in six cumulative doses of the alpha(1) adrenergic receptor agonist L-phenylephrine (l-Phe, 10(-8) to 3 x 10(-6) M) under 1.5-g preload and relaxed with one dose of acetylcholine (3 x 10(-6) M) to assess intact endothelium. The maximal force (F(max)) of contraction and relaxation, as well as the vessel sensitivity (pD(2)) were determined. Manganese deficiency, assessed by hepatic Mn content, significantly lowered the rate of animal growth. A two-way analysis of variance revealed that MnS animals developed lower F(max) when contracted with L-Phe compared with the MnD and MnA animals (P相似文献   

19.
The influence of intracellular angiotensin I (Ang I) and angiotensin II (Ang II) on the process of cell communication was investigated in isolated cell pairs from the failing heart of cardiomyopathic hamsters at 2 and at 6 months of age. Measurements of junctional conductance were performed on weekly coupled ventricular cells (4-5.3 nS) using two separated voltage clamp circuits. The results indicated that at 2 months of age, when no signs of heart failure are detected, the angiotensin converting enzyme (ACE) activity is low and similar to controls (0.26 nmol/mg/min). Here the intracellular dialysis of angiotensin I (10(-8) M) caused a decline of junctional conductance of 33+/-3.6% (n=35) (P<0.05) within 10 min while the administration of the same concentration of Ang I elicited cell uncoupling in cell pairs of 6-month-old cardiomyopathic hamsters in which the ACE activity was enhanced (0.41+/-0.05 nmol/mg/min) (P<0.05). Intracellular administration of angiotensin II in cell pairs of 2-month-old hamsters caused a decline of junctional conductance of only 25+/-4.5% (n=35) (P<0.05) compared to cell uncoupling in 6-month-old cardiomyopathic hamsters. Intracellular losartan(10(-8) M) reduced the effect of intracellular Ang II by 68+/-3.5% (n=28) on 2-month-old hamsters and abolished the effect of the peptide on 6-month-old hamsters. To investigate the influence of endogenous angiotensin II on the regulation of cell coupling, enalapril maleate (10(-8) M) or enalaprilat (10(-9) M) was used. The results indicated that at 2 months of age, no change in cell coupling was elicited by the ACE inhibitor while at 6 months of age, there was an increment of cell coupling of 72+/-6.2% (P<0.05). Similar results were found with intracellular losartan (10(-8) M). These results support the view that endogenous angiotensin II is involved in the regulation of cell communication at an advanced stage of heart failure when the ACE activity is enhanced and the cardiac renin angiotensin system (RAS) is activated.  相似文献   

20.
The effects of peptide and non-peptide angiotensin II receptor antagonists on the responses to angiotensin II were examined using aortic rings and skin isolated from the toad. The contractile responses of aortic rings to (Ala-Pro-Gly) angiotensin II were inhibited by the angiotensin II analogue Leu8 angiotensin II, with a pA2 value of 7.6. Similarly, the concentration response curve for (Ala-Pro-Gly) angiotensin II was displaced to the right by the specific angiotensin receptor subtype antagonist DuP 753, with a pA2 value of 6.0. In contrast, the angiotensin receptor subtype 2 antagonists PD 123177 and CGP 42112A did not modify the contractile response to (Ala-Pro-Gly) angiotensin II. None of the antagonists was able to alter the contractile response to norepinephrine. Both Leu8 angiotensin II (10-8 mol·l-1) and DuP 753 (10-6 mol·l-1) partially inhibited angiotensin III-induced contractions in toad aorta. Angiotensin III, in turn, exhibited lower activity than [Asn1-Val5] angiotensin II in this preparation, its molar potency ratio being 0.293. Previous work from this laboratory reported that osmotic water permeability in the skin of the toad Bufo arenarum was increased by angiotensin II, the effect being blocked by the peptide antagonist Leu8 angiotensin II. The hydrosmotic response to [Asn1-Val5] angiotensin II (10-7 mol·l-1) was significantly inhibited by DuP 753 (10-6 and 5×10-6 mol·l-1), whereas the response was not inhibited by a tenfold higher concentration of either PD 123177 or CGP 42112A. DuP 753 (10-6 mol·l-1) also inhibited the hydrosmotic response to angiotensin III (10-7 mol·l-1). These results suggest that receptors for angiotensin II present in isolated toad aorta and skin exhibit pharmacological features similar to those characterized as angiotensin subtype 1 in mammalian tissues.Abbreviations AT 1 angiotensin receptor subtype 1 - AT 2 angiotensin receptor subtype 2 - AT II angiotensin II - AT III angiotensin III - CDRC cumulative doseresponse curve(s) - NE norepinephrine - SCC short-circuit current  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号