首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Two strains with mutations in the first structural gene of the histidine operon of Salmonella typhimurium were characterized. (The first structural gene specifies the first enzyme of histidine biosynthesis, phosphoribosyltransferase, which is sensitive to feedback inhibition by histidine.) One mutation, hisG3934, results in a phosphoribosyltransferase which is no longer sensitive to feedback inhibition by histidine but is instead subject to inhibition by aspartic acid. The other mutation, hisG3935, allows the histidine operon to be partially repressed by several amino acids, including aspartic acid. Analysis of hisG3935 is consistent with the hypothesis that phosphoribosyltransferase is directly involved in the regulation of the histidine operon.  相似文献   

2.
Previous studies showed that when triazolalanine was added to a derepressed culture of a histidine auxotroph, repression of the histidine operon occurred as though histidine had been added (6). However, when triazolalanine was added to a derepressed culture of a strain with a mutation in the first gene of the histidine operon which rendered the first enzyme for histidine biosynthesis resistant to inhibition by histidine, repression did not occur. The studies reported here represent a cis/trans test of this effect of mutations to feedback resistance. Using specially constructed merodiploid strains, we were able to show that the wild-type allele is dominant to the mutant (feedback resistant) allele and that the effect operates in trans. We conclude that the enzyme encoded by the first gene of the histidine operon exerts its regulatory effect on the operon not by acting locally at its site of synthesis, but by acting as a freely diffusible protein.  相似文献   

3.
4.
1. Several lac diploid strains of Escherichia coli were constructed and tested to discover whether mutations in the lac promoter alleviate catabolite repression. 2. In each of these diploids the chromosome carries one of the promoter mutations, L8, L29 or L1; so that the rate of synthesis of the enzymes of the lac operon is only 2-6% of the fully induced wild-type. Each diploid harbours the episome F'lacM15 that specifies the synthesis of thiogalactoside transacetylase under the control of intact regulator, promoter and operator regions, but has a deletion in the structural gene for beta-galactosidase. In each diploid more than 90% of the thiogalactoside transacetylase is synthesized from the episome, and 100% of the beta-galactosidase is synthesized from the chromosome, and comparison of the extent of catabolite repression that the two enzymes suffered indicated whether the chromosomal promoter mutation relieves catabolite repression. 3. In the strains in which the promoter carries either of the point mutations L8 or L29 the enzymes were equally repressed, suggesting that neither L8 nor L29 affects catabolite repression. 4. In a diploid strain harbouring the same episome but carrying deletion L1 on the chromosome, synthesis of beta-galactosidase suffered much less repression than that of thiogalactoside transacetylase. 5. In a diploid strain in which the chromosome carries L1 and also a second mutation that increases the rate of expression of lac to that permitted by L8 or L29, the synthesis of beta-galactosidase again suffered much less repression than the synthesis of thiogalactoside transacetylase. 6. The effect of L1 (which deletes the boundary between the i gene and the lac promoter) is ascribed to its bringing the expression of lac under the control of the promoter of the i gene. 7. Even in strains carrying L1, some catabolite repression persists; this is not due to a trans effect from the episome since it occurs equally in a haploid strain with L1.  相似文献   

5.
The histidine operon of Salmonella typhimurium and its fragments were cloned in Escherichia coli cells on a multicopy plasmid. Expression of the cloned genes and histidine production by the variants possessing the hisG mutation which desensibilizes the ATP phosphoribosyl transferase for histidine were studied. Amplification of the complete operon including the hisG gene enables histidine accumulation of 2-3 g/l after 72 hours of fermentation.  相似文献   

6.
hisT is part of a multigene operon in Escherichia coli K-12.   总被引:14,自引:8,他引:6       下载免费PDF全文
The Escherichia coli K-12 hisT gene has been cloned, and its organization and expression have been analyzed on multicopy plasmids. The hisT gene, which encodes tRNA pseudouridine synthase I (PSUI), was isolated on a Clarke-Carbon plasmid known to contain the purF gene. The presence of the hisT gene on this plasmid was suggested by its ability to restore both production of PSUI enzymatic activity and suppression of amber mutations in a hisT mutant strain. A 2.3-kilobase HindIII-ClaI restriction fragment containing the hisT gene was subcloned into plasmid pBR322, and the resulting plasmid (designated psi 300) was mapped with restriction enzymes. Complementation analysis with different kinds of hisT mutations and tRNA structural analysis confirmed that plasmid psi 300 contained the hisT structural gene. Enzyme assays showed that plasmid psi 300 overproduced PSUI activity by ca. 20-fold compared with the wild-type level. Subclones containing restriction fragments from plasmid psi 300 inserted downstream from the lac promoter established that the hisT gene is oriented from the HindIII site toward the ClaI site. Other subclones and derivatives of plasmid psi 300 containing insertion or deletion mutations were constructed and assayed for production of PSUI activity and production of proteins in minicells. These experiments showed that: (i) the proximal 1.3-kilobase HindIII-BssHII restriction fragment contains a promoter for the hisT gene and encodes a 45,000-dalton polypeptide that is not PSUI; (ii) the distal 1.0-kilobase BssHII-ClaI restriction fragment encodes the 31,000-dalton PSUI polypeptide; (iii) the 45,000-dalton polypeptide is synthesized in an approximately eightfold excess compared with PSUI; and (iv) synthesis of the two polypeptides is coupled, suggesting that the two genes are part of an operon. Insertion of mini-Mu d1 (lac Km) phage into plasmid psi 300 confirmed that the hisT gene is the downstream gene in the operon.  相似文献   

7.
8.
Among mutants of Escherichia coli resistant to p-fluorophenylalanine (PFP) were some with constitutive expression of the phenylalanine biosynthetic operon (the pheA operon). This operon is repressed in the wild type by phenylalanine. The mutation in three of these mutants mapped in the aroH-aroD region of the E. coli chromosome at 37 min. A plasmid bearing wild-type DNA from this region restored p-fluorophenylalanine sensitivity and wild-type repression of the pheA operon. Analysis of subclones of this plasmid and comparison of its restriction map with published maps indicated that the mutations affecting regulation of the pheA operon lie in the structural genes for phenylalanyl-tRNA synthetase, pheST, probably in pheS. Thus, the pheST operon has a role in the regulation of phenylalanine biosynthesis, the most likely being that wild-type phenylalanyl-tRNA synthetase maintains a sufficient intracellular concentration of Phe-tRNA(Phe) for attenuation of the pheA operon in the presence of phenylalanine. A revised gene order for the 37-min region of the chromosome is reported. Read clockwise, the order is aroD, aroH, pheT, and pheS.  相似文献   

9.
F'-episomes carrying the Salmonella typhimurium wild-type or attenuator-deleted histidine (his) operons were introduced into Escherichia coli strains containing relA or spoT single and double mutations known to affect guanosine 3'-diphosphate 5'-diphosphate (ppGpp) and guanosine 3'-triphosphate 5'-diphosphate (pppGpp) levels. Expression of the his operon and expression of the gene for 6-phosphogluconate dehydrogenase (gnd) were measured during balanced growth in amino acid-rich and minimal media. The data were consistent with the interpretation that ppGpp is a positive effector of his operon expression, whereas pppGpp is not an essential effector. The conclusion that his operon expression is maximally stimulated at a lower than maximum intracellular ppGpp concentration was further confirmed. Neither ppGpp nor pppGpp appeared to influence gnd gene expression. The metabolic regulation of the E. coli his operon was found to be similar to the ppGpp-meidated metabolic regulation of the S. typhimurium his operon.  相似文献   

10.
M R Atkinson  L V Wray  Jr    S H Fisher 《Journal of bacteriology》1993,175(14):4282-4289
During growth of Bacillus subtilis in nutrient sporulation medium containing histidine (DSM-His medium), the expression of histidase, the first enzyme in the histidine-degradative pathway (hut), is derepressed 40- to 200-fold at the onset of stationary phase. To identify the gene products responsible for this regulation, histidase expression was examined in various hut regulatory mutants as well as in mutants defective in stationary-phase gene regulation. Histidase expression during growth in DSM-His medium was significantly altered only in a strain containing the hutC1 mutation. The hutC1 mutation allows the hut operon to be expressed in the absence of its inducer, histidine. During logarithmic growth in DSM-His medium, histidase levels were 25-fold higher in the HutC mutant than in wild-type cells. Moreover, histidase expression in the HutC mutant increased only four- to eightfold after the end of exponential growth in DSM-His medium. This suggests that histidine transport is reduced in wild-type cells during exponential growth in DSM-His medium and that this reduction is largely responsible for the repression of hut expression in cells growing logarithmically in this medium. Indeed, the rate of histidine uptake in DSM-His medium was fourfold lower in exponentially growing cells than in stationary-phase cells. The observation that the degradation of histidine is inhibited when B. subtilis is growing rapidly in medium containing a mixture of amino acids suggests that a hierarchy of amino acid utilization may be present in this bacterium.  相似文献   

11.
The hisG gene is the most operator-proximal structural gene of the histidine operon; it encodes the feedback-inhibitable first enzyme of the biosynthetic pathway. Previously, hisG mutants were mapped into seven intervals defined by the availble deletion mutations having endpoints in the hisG gene. The map has been refined using over 60 new deletion mutants. The new map divides the gene into 40 deletion intervals, which average approximately 30 base pairs in length. The map has been used to analyze the distribution of insertion sites for the transposable element Tn10 and has permitted conclusions on the diistribution of duplication endpoints. The map promises to be useful in analysis of his regulation and, more particularly, in the determination of the possible role of the hisG enzyme in this mechanism.  相似文献   

12.
The hisT gene, one of six genes in which mutation causes derepression of the histidine operon in Salmonella typhimurium, is shown to code for a protein that is not essential for the growth of the bacteria. This is indicated by the characterization of particular classes of mutations in the hisT gene: amber mutations, frame-shift mutations, and temperature-sensitive mutations that affect repression but not growth. In addition, the class of semilethal mutations was selected for but not found.  相似文献   

13.
Expression of the histidine (his) operon in Salmonella typhimurium was found to be positively correlated with the intracellular level of guanosine tetraphosphate (ppGpp). Limitation for amino acids other than histidine elicited a histidine-independent metabolic regulation of the operon. In bacteria grown at decreased growth rates, his operon expression was metabolically regulated up to a point, after which further decreases in growth rate no longer resulted in further enhancement of operon expression. Studies using strains carrying various regulatory and deletion mutations indicated that metabolic regulation is achieved predominantly by increased RNA chain initiations at the primary (P1) and internal (P2) promoters. Metabolic regulation ordinarly did not involve changes in RNA chain terminations at the attenuator site of the his operon. A model is proposed that involves ppGpp-induced changes in RNA polymerase initiation specificity at particular promoters. A second, special form of metabolic regulation may operate which also is histidine independent, but does involve relief of attenuation.  相似文献   

14.
15.
We previously proposed that the first enzyme for histidine biosynthesis in Salmonellatyphimurium plays a role in regulating expression of the histidine operon and that in order to play this role the enzyme must form a complex with histidyl-tRNA. Among the many observations that led to these conclusions were 1) that regulation of the histidine operon is defective in strains carrying a mutation in the gene for the first enzyme that renders the enzyme resistant to inhibition by histidine; and 2) that the enzyme purified from the wild type strain interacts specifically, and with high affinity, with histidyl-tRNA. The present study was carried out to test the prediction that the enzyme purified from the mutant strain described above would display a defect in its interaction with histidyl-tRNA. This prediction was fulfilled by the finding that purified histidine-insensitive enzyme does not bind histidyl-tRNA. Our results therefore suggest that the capacity of the enzyme to bind histidyl-tRNA invitro is a reflection of its regulatory function invivo.  相似文献   

16.
A new suppressor of +1 frameshift mutations has been isolated in Salmonella typhimurium. This suppressor, sufJ, maps at minute 89 on the Salmonella genetic map between the argH and rpo(rif) loci, closely linked to the gene for the ochre suppressor tyrU(supM). The suppressor mutation is dominant to its wild-type allele, consistent with the suppressor phenotype being caused by an altered tRNA species. The sufJ map position coincides with that of a threonine tRNA(ACC/U) gene; the suppressor has been shown to read the related fourbase codons ACCU, ACCC, ACCA.--The ability of sufJ to correct one particular mutation depends on the presence of a hisT mutation which causes a defect in tRNA modification. This requirement is allele specific, since other frameshift mutations can be corrected by sufJ regardless of the state of the hisT locus.--Strains carrying both a sufJ and a hisT mutation are acutely sensitive to growth inhibition by uracil; the inhibition is reversed by arginine. This behavior is characteristic of strains with mutations affecting the arginine-uracil biosynthetic enzyme carbamyl phosphate synthetase. The combination of two mutations affecting tRNA structure may reduce expression of the structural gene for this enzyme (pyrA).  相似文献   

17.
18.
19.
Mutations in the hisT gene of Salmonella typhimurium alter pseudouridine synthetase I, the enzyme that modifies two uridines in the anticodon loop of numerous transfer ribonucleic acid species. We have examined two strains carrying different hisT mutations for their ability to grow on a variety of nitrogen sources. The hisT mutants grew more rapidly than did hisT+ strains with either arginine or proline as the nitrogen source and glucose as the carbon source. The hisT mutations were transduced into new strains to show that these growth properties were due to the hisT mutations. The hisT mutations did not influence the growth of mutants having altered glutamine synthetase regulation. Assays of the three primary ammonia-assimilatory enzymes, glutamate dehydrogenase, glutamine synthetase, and glutamate synthase, showed that glutamate synthase activities were lower in hisT mutants than in isogenic hisT+ controls; however, the glutamate dehydrogenase activity was about threefold higher in the hisT strains grown in glucose-arginine medium. The results suggest that the controls for enzyme synthesis for nitrogen utilization respond either directly or indirectly to transfer ribonucleic acid species affected by the hisT mutation.  相似文献   

20.
A fragment of deoxyribonucleic acid 5,300 base paris long and containing the promoter-proximal portion of the histidine operon of Escherichia coli K-12, has been cloned in plasmid pBR313 (plasmids pCB2 and pCB3). Restriction mapping, partial nucleotide sequencing, and studies on functional expression in vivo and on protein synthesis in minicells have shown that the fragment contains the regulatory region of the operon, the hisG, hisD genes, and part of the hisC gene. Another plasmid (pCB5) contained the hisG gene and part of the hisD gene. Expression of the hisG gene in the latter plasmid was under control of the tetracycline promoter of the pBR313 plasmid. The in vivo expression of the two groups of plasmids described above, as well as their effect on the expression of the histidine genes not carried by the plasmids but present on the host chromosome, has been studied. The presence of multiple copies of pCB2 or pCB3, but not of pCB5, prevented derepression of the chromosomal histidine operon. Possible interpretations of this phenomenon are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号