首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pol A  Calvo M  Lu A  Enrich C 《Cellular signalling》2000,12(8):537-540
In this study, we demonstrate that, in rat liver, epidermal growth factor (EGF) is responsible for the partial redistribution of caveolin-1 from the plasma membrane into the early/sorting endocytic compartment. Highly purified endosomes and plasma membrane fractions were isolated from control rat liver and from rats injected with EGF or pIgA for different times. Whereas in subcellular fractions from control hepatocytes most of caveolin was concentrated in the plasma membrane and the receptor-recycling fractions, after EGF injection there was a significant redistribution of caveolin toward the early/sorting (CURL) endocytic fractions. The recruitment of caveolin into the endocytic compartment was not induced by pIgA.  相似文献   

2.
Asialoglycoprotein receptors, responsible for the removal of circulating asialoglycoproteins by the liver, are located in at least two different membrane locations in hepatocytes. Receptors on the cell surface account only for a minor proportion (20-36%), for the majority of receptors in the liver are located intracellularly, mainly in the endocytic membrane networks. An understanding of the basis of receptor distribution and the underlying trafficking of receptors between the hepatocyte's polarised cell surface and the endocytic compartment would be aided if biochemical differences between the receptors in these pools were established. We now show, using three antibodies that recognise the receptor subunits in rat liver (RHL-1, RHL-2 and RHL-3), that the asialoglycoprotein receptors located in the plasma membrane domains and the endocytic compartment differ in oligomeric composition, sialic acid content, and solubility in Triton X-114 using two-phase systems. It is well established that the expression of the asialoglycoprotein receptor is down-regulated in livers regenerating after a partial hepatectomy. We demonstrate that the levels of the receptor subtype that is located mainly in the endocytic compartment (RHL-1, 42 kDa) was elevated in regenerating liver by agents that regulate cAMP production, whereas the levels of the other receptor subtypes remained unchanged. The asialoglycoprotein receptor subtypes that are present in different subcellular locations are thus regulated independently.  相似文献   

3.
The presence of fibronectin in rat liver endocytic compartment was investigated using biochemical and immunological approaches. Three endosome subfractions were separated from postmitochondrial lysosome supernatants using sucrose and isoosmotic Nycodenz gradients. Using these endosomes the presence of fibronectin in the "early" and "late" endosome subfractions and in a receptor-enriched fraction was demonstrated by Western blot analysis. Furthermore, immunofluorescence studies using an anti-rat fibronectin antiserum and an anti-rat endosome antiserum showed similar patterns of staining in frozen liver sections. The results indicate that the components of the extracellular matrix extend into the endocytic compartment and suggest that fibronectin is internalised in a manner similar to that of some plasma membrane proteins.  相似文献   

4.
The subcellular localization of 3H-labelled 59Fe-loaded transferrin accumulated by the liver has been studied by means of cell fractionation techniques. More than 96% of the 59Fe present in the liver of rats perfused with 59Fe-labelled transferrin is recovered in the parenchymal cells. Rat livers were perfused with 10 micrograms/ml 3H-labelled 59Fe-saturated transferrin, homogenized separated in nuclear (N), mitochondrial (M), light mitochondrial (L), microsomal (P) and supernatant (S) fractions; M, L and P fractions were further analysed by isopycnic centrifugation in sucrose gradients. 3H label distributes essentially around densities of 1.13-1.14 g/ml overlapping to a large extent with the distribution of galactosyltransferase, the marker enzyme of the Golgi complex. However, after treatment with low concentrations of digitonin the 3H label dissociates from galactosyltransferase and is shifted to higher densities, suggesting an association of transferrin with cholesterol-rich endocytic vesicles which could derive from the plasma membrane. 59Fe is mostly found in the supernatant fraction largely in the form of ferritin, as indicated by its reaction with antiferritin antibodies. In the mitochondrial fraction the density distribution of 59Fe suggests an association with lysosomes and/or mitochondria. In contrast to the lysosomal enzyme cathepsin B, the density distribution of 59Fe was only slightly affected by pretreatment of the rats with Triton WR 1339, suggesting its association with the mitochondria. At 15 degrees C, 59Fe and 3H labels are recovered together in low-density endocytic vesicles. On the basis of our results we suggest that, at low extracellular transferrin concentration, iron uptake by the liver involves endocytosis of the transferrin protein. The complex is interiorized in low-density acidic vesicles where iron is released. The iron passes into the cytosol, where it is incorporated into ferritin and into the mitochondria. The iron-depleted transferrin molecule would then be returned to the extracellular medium during the recycling of the plasma membrane.  相似文献   

5.
Antibodies raised to two membrane proteins present in rat liver endosomal fractions were used to study changes occurring in the endocytic compartment of hepatocytes during liver regeneration. Antibodies to the 42-kDa subunit (RHL-1) of the asialoglycoprotein receptor showed, by Western blotting of liver microsomes and endosomes, that there was a reduced expression of the receptor in liver 24 h following a partial hepatectomy. Immunocytochemical staining of thin sections of regenerating livers using these antibodies indicated that there was an intracellular relocation of endocytic structures in hepatocytes. The two main endocytic regions immunocytochemically stained in normal liver--one located beneath the sinusoidal plasma membrane and the other abutting the bile canaliculus--were replaced, in regenerating liver, by staining more closely associated with a region underlying the baso-lateral plasma membrane. A 140-kDa pI 4.3 calmodulin-binding protein located in endocytic and plasma membranes was also demonstrated, using a radio-iodinated calmodulin-binding assay, to be present at reduced levels in endosomes isolated from regenerating livers. Antibodies to this calmodulin-binding protein stained the hepatocyte's cytoplasm in a punctate manner. However, in regenerating liver, the staining was located in regions underlying the baso-lateral and apical plasma membrane of hepatocytes. Together, the results demonstrate that a reorganization of the endocytic compartment has occurred in hepatocytes 24 h following hepatectomy, with two endosomal proteins becoming relocated to a region below the baso-lateral-apical surface regions of hepatocytes.  相似文献   

6.
The enterocyte-like cell line Caco-2 forms a polarized epithelium when grown on filters. We have investigated the interaction of endocytic pathways from the apical and basolateral surfaces. The transferrin receptor was an appropriate marker for the basolateral route; uptake of radiolabeled transferrin was highly polarized, and recycling of this ligand back to the basolateral surface occurred with an efficiency of 95%, even after prolonged incubations with transferrin. Using a transferrin-peroxidase conjugate to delineate the morphological pathway, we have identified an early endocytic compartment in the basolateral cytoplasm of the cells. Longer incubations revealed a deeper endocytic compartment in the apical cytoplasm. Concanavalin A complexed to gold was used to simultaneously label the apical endocytic route. After 60 min, extensive mixing of the two labels was seen in endocytic elements throughout the apical cytoplasm, including in the Golgi area, but never in the basal cytoplasm. Using a second double labeling procedure in which antitransferrin receptor antibody complexed to gold was applied to the basolateral surface for up to 2 h and free peroxidase applied to the apical surface for shorter periods, we demonstrated that this apical marker rapidly (within 5 min) reached endosomes containing antibody-gold. Our results indicate that, in Caco-2 cells, the endocytic pathways from the apical and basolateral surfaces meet in an endosomal compartment from which transferrin can still be recycled.  相似文献   

7.
Immunocytochemical labeling of ultrathin cryosections from rat liver showed that mannose-terminated glycoproteins are removed rapidly from the blood stream mainly by the sinusoidal endothelial cells. The mannose-terminated glycoprotein ovalbumin was injected intravenously into rats 1 min, 6 min, and 24 min before perfusion fixation of the liver. Several minor and at least three major subcellular compartments were shown to be involved in the endocytic process. One minute after injection, ovalbumin was found at the cell surface, in coated pits, in coated vesicles, in tubular structures, and bound to the membrane of large early endosomes of which some showed a cisternal structure. After 6 min, ovalbumin was found in the lumen of large electron-lucent late endosomes and after 24 min in electron-dense structures, presumably lysosomes. The early endosomes have an ultrastructure which, together with the labeling pattern, indicates that this compartment has the same function as the CURL identified in parenchymal liver cells. The results are in accordance with recent biochemical findings indicating that ovalbumin endocytosed by endothelial cells is found sequentially in three different subcellular fractions depending on the time between injection and cooling for fractionation (G. M. Kindberg, T. Berg: Intracellular transport of endocytosed mannose terminated glycoproteins in rat liver endothelial cells. In: E. Wisse, D. L. Knook, K. Decker (eds.): Cells of the Hepatic Sinusoid. Vol. 2. pp. 120-124. Kupffer Cell Foundation. Rijswijk The Netherlands 1989).  相似文献   

8.
Although endosomes and lysosomes are associated with different subcellular functions, we present evidence that a lysosomal enzyme, arylsulfatase-A, is present in prelysosomal vesicles which constitute part of the endosomal compartment. When human cultured fibroblasts were subfractionated with Percoll gradients, arylsulfatase-A activity was enriched in three subcellular fractions: dense lysosomes, light lysosomes, and light membranous vesicles. Pulsing the cells for 1 to 10 min with the fluid-phase endocytic marker, horseradish peroxidase, showed that endosomes enriched with the marker were distributed partly in the light lysosome fraction but mainly in the light membranous fraction. By pulsing the fibroblasts for 10 min with horseradish peroxidase conjugated to colloidal gold and then staining the light membranous and light lysosomal fractions for arylsulfatase-A activity with a specific cytochemical technique, the endocytic marker was detected under the electron microscope in the same vesicles as the lysosomal enzyme. The origin of the lysosomal enzyme in this endosomal compartment was shown not to be acquired through mannose 6-phosphate receptor-mediated endocytosis of enzymes previously secreted from the cell. Together with our recent finding that the light membranous fraction contains prelysosomes distinct from bona fide lysosomes and was highly enriched with newly synthesized arylsulfatase-A molecules, these results demonstrate that prelysosomes also constitute part of the endosomal compartment to which intracellular lysosomal enzymes are targeted.  相似文献   

9.
In eukaryotic cells, compartments of the highly dynamic endomembrane system are acidified to varying degrees by the activity of vacuolar H(+)-ATPases (V-ATPases). In the Arabidopsis thaliana genome, most V-ATPase subunits are encoded by small gene families, thus offering potential for a multitude of enzyme complexes with different kinetic properties and localizations. We have determined the subcellular localization of the three Arabidopsis isoforms of the membrane-integral V-ATPase subunit VHA-a. Colocalization experiments as well as immunogold labeling showed that VHA-a1 is preferentially found in the trans-Golgi network (TGN), the main sorting compartment of the secretory pathway. Uptake experiments with the endocytic tracer FM4-64 revealed rapid colocalization with VHA-a1, indicating that the TGN may act as an early endosomal compartment. Concanamycin A, a specific V-ATPase inhibitor, blocks the endocytic transport of FM4-64 to the tonoplast, causes the accumulation of FM4-64 together with newly synthesized plasma membrane proteins, and interferes with the formation of brefeldin A compartments. Furthermore, nascent cell plates are rapidly stained by FM4-64, indicating that endocytosed material is redirected into the secretory flow after reaching the TGN. Together, our results suggest the convergence of the early endocytic and secretory trafficking pathways in the TGN.  相似文献   

10.
The distributions of two endocytosed radiolabelled ligands (polymeric immunoglobulin A and asialofetuin) in rat liver endocytic compartments were investigated by using rapid subcellular fractionation of post-mitochondrial supernatants on vertical density gradients of Ficoll or Nycodenz. Two endocytic compartments were identified, both ligands being initially associated with a light endocytic-vesicle fraction on Ficoll gradients, asialofetuin then accumulating in denser endosomes before transfer to lysosomes for degradation.  相似文献   

11.
Endocytosis of formaldehyde-treated serum albumin (FSA) mediated by the scavenger receptor was studied in rat liver endothelial cells. Suspended cells had about 8000 receptors/cell, whereas cultured cells had about 19,000 receptors/cell. Kd was 10(-8) M in both systems. Cell-surface scavenger receptors were found exclusively in coated pits by electron microscopy, by using ligand labelled with colloidal gold. Cell-surface-bound FSA could be released by decreasing the pH to 6.0; it was therefore possible to assess the rate of internalization of surface-bound ligand. This rate was very high: t1/2 for internalization of ligand prebound at 4 degrees C was 24 s. The endocytic rate constant at 37 degrees C, Ke, measured as described by Wiley & Cunningham [(1982) J. Biol. Chem. 257, 4222-4229], was 2.44 min-1, corresponding to t1/2 = 12 s. Uptake of FSA at 37 degrees C after destruction of one cell-surface pool of receptors by Pronase was decreased to 60%. This finding is compatible with a relatively large intracellular pool of receptors. The intracellular handling of 125I-tyramine-cellobiose-labelled FSA (125I-TC-FSA) was studied by subcellular fractionation in sucrose gradients, Nycodenz gradients or by differential centrifugation. The density distributions of degraded and undegraded 125I-TC-FSA after fractionation of isolated non-parenchymal cells and whole liver were similar, when studied in Nycodenz and sucrose gradients, suggesting that the subcellular distribution of the ligand was not influenced by the huge excess of non-endothelial material in a whole liver homogenate. Fractionation in sucrose gradients showed that the ligand was sequentially associated with organelles banding at 1.14, 1.17 and 1.21 g/ml. At 9-12 min after intravenous injection the ligand was in a degradative compartment, as indicated by the accumulation of acid-soluble radioactivity at 1.21 g/ml. A rapid transfer of ligand to the lysosomes was also indicated by the finding that a substantial proportion of the ligand could be degraded by incubating mitochondrial fractions prepared 12 min after intravenous injection of the ligand. The results indicate that FSA is very rapidly internalized and transferred through an endosomal compartment to the lysosomes. The endosomes are gradually converted into lysosomes between 9 and 12 min after injection of FSA. The rate-limiting step in the intracellular handling of 125I-TC-FSA is the degradation in the lysosomes.  相似文献   

12.
Mucolipin-1 is a 65-kDa membrane protein encoded by the MCOLN1 gene, which is mutated in patients with mucolipidosis type IV (MLIV), a rare neurodegenerative lysosomal storage disorder. We studied the subcellular localization of wild-type and three different mutant forms (T232P, F408del and F465L) of mucolipin by expressing Myc-tagged proteins in HeLa cells. The overexpressed wild-type mucolipin colocalizes to late endocytic structures and induces an aberrant distribution of these compartments. F408del and F465L MLIV mutant proteins show a distribution similar to the wild-type protein, whereas T232P is retained in the endoplasmic reticulum. Among the mutants, only F408del induces a redistribution of the late endocytic compartment. These findings suggest that the overexpression of the mucolipin cation channel influences the dynamic equilibrium of late endocytic compartments.  相似文献   

13.
The endocytic compartment of polarized cells is organized in basolateral and apical endosomes plus those endocytic structures specialized in recycling and transcytosis, which are still poorly characterized. The complexity of the various populations of endosomes has been demonstrated by the exquisite repertoire of endogenous proteins. In this study we examined the distribution of cellubrevin in the endocytic compartment of hepatocytes, since its intracellular location and function in polarized cells are largely unknown. Highly purified rat liver endosomes were isolated from estradiol-treated rats, and the early/sorting endosomal fraction was further subfractionated in a multistep sucrose density gradient, and studied. Analysis of dissected endosomal fractions showed that cellubrevin was located in early/sorting endosomes, with Rab4, annexins II and VI, and transferrin receptor, but in a specific subpopulation of these early endosomes with the same density range as pIgA and Raf-1. Interestingly, only in those isolated endosomal fractions, endosomes enriched in transcytotic structures (of livers loaded with IgA), the polymeric immunoglobulin receptor specifically co-immunoprecipitated with cellubrevin. In addition, confocal and immuno-electron microscopy identification of cellubrevin in tubular structures underneath the sinusoidal plasma membrane together with the re-organization of cellubrevin, in the endocytic compartment, after the IgA loading, strongly suggest the involvement of cellubrevin in the transcytosis of pIgA.  相似文献   

14.
1. A gamma camera was used to monitor continuously the uptake of radiolabelled polymeric immunoglobulin A (pIgA) into the rat body after intravenous injection. Uptake into liver was fast but, since the peak of liver labelling occurred only after 9-15 min, it was not sufficiently rapid to constitute a pulse dose. A perfused, isolated rat liver system was therefore established which could be given a single pass dose of pIgA; a variety of tests showed such livers remained viable for at least 3 h and could be subsequently fractionated on Ficoll and Nycodenz gradients with normal distributions of marker enzymes. 2. Subcellular fractionation at different times after a single pass dose of pIgA showed that whilst pIgA appeared sequentially in sinusoidal plasma membrane, light endosomes, dense endosomes, very dense endosomes and lysosomes as in vivo, the predominance of pIgA in the light endosome compartment disappeared much earlier than after injection in vivo of pIgA, presumably because this compartment was not being continuously loaded over the first 10-15 min. The time course of appearance of label in bile was unchanged. A large excess of unlabelled asialofetuin did not change these patterns, indicating that the asialoglycoprotein receptor was not involved. 3. Low doses of the microtubule agent colchicine reduced the proportion of pIgA reaching the bile, but subcellular fractionation of treated liver showed that distribution of label amongst liver fractions was little changed, although the overall liver pIgA content had increased. This would suggest that pIgA did not remain in the common compartment which could have supplied bile or lysosomes but rather flowed out of it as rapidly as in untreated liver but towards those compartments supplying the lysosomes. 4. Experiments with nocodazole, which reversibly disrupts microtubules, showed that very little of the pIgA taken into an inhibited liver appeared in the bile after nocodazole was removed 30 min later, even though a second dose of pIgA, given after nocodazole removal, appeared in bile with a normal time course. The first dose of pIgA must therefore have passed beyond the compartments competent to supply the bile before nocodazole was removed. Such compartments were undamaged since the second dose of pIgA appeared in bile normally. We therefore conclude that the bulk of pIgA must be supplied to the bile from light or dense endosomes rather than from very dense endosomes and lysosomes.  相似文献   

15.
The endocytic compartment of eukaryotic cells is a complex intracellular structure involved in sorting, processing, and degradation of a great variety of internalized molecules. Recently, the uptake through caveolae has emerged as an alternative internalization pathway, which seems to be directly related with some signal transduction pathways. However, the mechanisms, molecules, and structures regulating the transport of caveolin from the cell surface into the endocytic compartment are largely unknown. In this study, normal quiescent fibroblasts (normal rat kidney (NRK)) were used to demonstrate that epidermal growth factor causes partial redistribution of caveolin from the cell surface into a cellubrevin early endocytic compartment. Treatment of NRK cells with cytochalasin D or latrunculin A inhibits this pathway and the concomitant activation of Mek and mitotic-activated protein (MAP) kinase; however, if cells were pre-treated with filipin, cytochalasin D does not inhibit the phosphorylation of MAP kinase induced by epidermal growth factor. From these results we conclude that in NRK cells the intact actin cytoskeleton is necessary for the EGF-mediated transport of caveolin from the cell surface into the early endocytic compartment and the activation of MAP kinase pathway.  相似文献   

16.
A morphometric analysis was made to study membrane traffic in bone marrow-derived macrophages, containing phagosomes with partially degraded Bacillus subtilis. Cell surface glycoproteins, labeled with radioactive galactose by terminal glycosylation, provided a covalent autoradiographic membrane marker. Membrane compartments were characterized in terms of cytochemical staining for horseradish peroxidase taken up by receptor-mediated endocytosis. The area, composition, and exchange rates of endocytic membrane compartments were measured as in a previous analysis for non-infected macrophages, devoid of phagosomes. In direct comparison with this earlier study, the present data allowed an assessment of the involvement of phagosomes in the interactions between endocytic membrane compartments. The presence of phagosomes led to a 30% reduction of lysosomal membrane area. The rate at which cell surface-derived label flowed into the lysosomal membrane pool was reduced by the same fractional amount. This suggested a linear relationship between flow rate and membrane area. The initial flow rate of label into phagosomes was higher than expected, based on their membrane area being only about 60% that of lysosomes. This rate could only be measured during the early phase of the experiments when phagosomes were younger, therefore displaying a fast exchange rate, reminiscent of the endosome compartment. However, steady-state conditions, at late times, strongly suggested that phagosomes with degraded contents finally acquire membrane of lysosomal origin. First, the composition of phagosome membrane became the same as that of lysosomes, remaining unchanged as compared to non-infected cells. Second, the membrane area of phagosomes amounted to the loss of lysosomal membrane area in infected cells.  相似文献   

17.
Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting endosomes and the endocytic recycling compartment, suggesting a role for distinct Rab15-effector interactions at these endocytic compartments. In this study, we identified the novel protein Rab15 effector protein (REP15) as a binding partner for Rab15-GTP. REP15 is compartment specific, colocalizing with Rab15 and Rab11 on the endocytic recycling compartment but not with Rab15, Rab4, or early endosome antigen 1 on sorting endosomes. REP15 interacts directly with Rab15-GTP but not with Rab5 or Rab11. Consistent with its localization, REP15 overexpression and small interfering RNA-mediated depletion inhibited transferrin receptor recycling from the endocytic recycling compartment, without affecting receptor entry into or recycling from sorting endosomes. Our data identify REP15 as a compartment-specific protein for receptor recycling from the endocytic recycling compartment, highlighting that the rapid and slow modes of transferrin receptor recycling are mechanistically distinct pathways.  相似文献   

18.
Nuclear Functions for Plasma Membrane-Associated Proteins?   总被引:3,自引:1,他引:2  
There are a growing number of observations that proteins, which were initially thought to perform a specific function in a given subcellular compartment, may also play additional roles in different locations within the cell. Proteins found in adhesion and endocytic structures of the plasma membrane and which also traffic to the nucleus perhaps represent the more spectacular examples of this phenomenon. The mechanisms involved in the transport of these molecules through the nuclear pores and their potential nuclear functions are discussed.  相似文献   

19.
Monitoring lysosomal fusion in electrofused hybridoma cells   总被引:1,自引:0,他引:1  
Dendritic and tumor cells are fused to produce hybridoma cells, which are considered to be used as cellular vaccines to treat cancer. Previous strategies for hybridoma cell production were based on the quantification of the electrofusion yield by labeling the cytoplasm of both parental cell types. However, a better physiological strategy would be to label subcellular structures related directly to the antigen presentation process. Therefore, we here electrofused the same amount of CHO cells stained with red and green fluorescent dextrans and have monitored the yield of hybridoma cell formation by measuring the fusion of red and green late endocytic organelles that are involved in antigen presentation. By using confocal microscopy, the level of fused, fluorescently labelled late endocytic compartments in a single hybridoma cell was determined. The results demonstrate that organellar fusion occurs in hybridomas, which is time- and temperature-dependent. This approach therefore provides a new method for the hybridoma cell vaccine evaluation, which is based on the intracellular physiological mechanism of antigen presentation.  相似文献   

20.
Dendritic and tumor cells are fused to produce hybridoma cells, which are considered to be used as cellular vaccines to treat cancer. Previous strategies for hybridoma cell production were based on the quantification of the electrofusion yield by labeling the cytoplasm of both parental cell types. However, a better physiological strategy would be to label subcellular structures related directly to the antigen presentation process. Therefore, we here electrofused the same amount of CHO cells stained with red and green fluorescent dextrans and have monitored the yield of hybridoma cell formation by measuring the fusion of red and green late endocytic organelles that are involved in antigen presentation. By using confocal microscopy, the level of fused, fluorescently labelled late endocytic compartments in a single hybridoma cell was determined. The results demonstrate that organellar fusion occurs in hybridomas, which is time- and temperature-dependent. This approach therefore provides a new method for the hybridoma cell vaccine evaluation, which is based on the intracellular physiological mechanism of antigen presentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号