首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unlike skin, oral gingiva do not scar in response to injury. The basis of this difference is likely to be revealed by comparing the responses of dermal and gingival fibroblasts to fibrogenic stimuli. Previously, we showed that, compared to dermal fibroblasts, gingival fibroblasts are less responsive to the potent pro-fibrotic cytokine TGFβ, due to a reduced production of endothelin-1 (ET-1). In this report, we show that, compared to dermal fibroblasts, human gingival fibroblasts show reduced expression of pro-adhesive mRNAs and proteins including integrins α2 and α4 and focal adhesion kinase (FAK). Consistent with these observations, gingival fibroblasts are less able to adhere to and spread on both fibronectin and type I collagen. Moreover, the enhanced production of ET-1 mRNA and protein in dermal fibroblasts is reduced by the FAK/src inhibitor PP2. Given our previous observations suggesting that fibrotic fibroblasts display elevated adhesive properties, our data suggest that scarring potential may be based, at least in part, on differences in adhesive properties among fibroblasts resident in connective tissue. Controlling adhesive properties may be of benefit in controlling scarring in response to tissue injury.  相似文献   

2.
Genetic plasticity of prokaryotic microbial communities is largely dependent on the ongoing exchange of genetic determinants by Horizontal Gene Transfer (HGT). HGT events allow beneficial genetic transitions to occur throughout microbial life, thus promoting adaptation to changing environmental conditions. Here, the significance of secreted vesicles in mediating HGT between microorganisms is discussed, while focusing on the benefits gained by vesicle‐mediated gene delivery and its occurrence under different environmental cues. The potential use of secreted DNA‐harboring vesicles as a mechanism of currently unresolved HGT events in eukaryotic microbes is further discussed.  相似文献   

3.
Extracellular calmodulin: A polypeptide signal in plants?   总被引:7,自引:0,他引:7  
Traditionally, calmodulin (CaM) was thought to be a multi-functional receptor for intra-cellular Ca2+ signals. But in the last ten years, it was found that CaM also exists and acts extracel-lularly in animal and plant cells to regulate many important physiological functions. Laboratory studies by the authors showed that extracellular CaM in plant cells can stimulate the proliferation of suspension cultured cell and protoplast; regulate pollen germination and pollen tube elongation, and stimulate the light-independent gene expression of Rubisco small subunit (rbcS). Furthermore, we defined the trans-membrane and intracellular signal transduction pathways for extracellular CaM by using a pollen system. The components in this pathway include heterotrimeric G-protein, phospholipase C, IP3, calcium signal and protein phosphorylation etc. Based on our findings, we suggest that extracellular CaM is a polypeptide signal in plants. This idea strongly argues against the traditional concept that there is no interce  相似文献   

4.
5.
6.
7.
8.
9.
10.
Lung fibrosis is characterized by excessive deposition of extracellular matrix. This not only affects tissue architecture and function, but it also influences fibroblast behavior and thus disease progression. Here we describe the expression of elastin, type V collagen and tenascin C during the development of bleomycin-induced lung fibrosis. We further report in vitro experiments clarifying both the effect of myofibroblast differentiation on this expression and the effect of extracellular elastin on myofibroblast differentiation.Lung fibrosis was induced in female C57Bl/6 mice by bleomycin instillation. Animals were sacrificed at zero to five weeks after fibrosis induction. Collagen synthesized during the week prior to sacrifice was labeled with deuterium. After sacrifice, lung tissue was collected for determination of new collagen formation, microarray analysis, and histology. Human lung fibroblasts were grown on tissue culture plastic or BioFlex culture plates coated with type I collagen or elastin, and stimulated to undergo myofibroblast differentiation by 0–10 ng/ml transforming growth factor (TGF)β1. mRNA expression was analyzed by quantitative real-time PCR.New collagen formation during bleomycin-induced fibrosis was highly correlated to gene expression of elastin, type V collagen and tenascin C. At the protein level, elastin, type V collagen and tenascin C were highly expressed in fibrotic areas as seen in histological sections of the lung. Type V collagen and tenascin C were transiently increased. Human lung fibroblasts stimulated with TGFβ1 strongly increased gene expression of elastin, type V collagen and tenascin C. The extracellular presence of elastin increased gene expression of the myofibroblastic markers α smooth muscle actin and type I collagen.The extracellular matrix composition changes dramatically during the development of lung fibrosis. The increased levels of elastin, type V collagen and tenascin C are probably the result of increased expression by fibroblastic cells; reversely, elastin influences myofibroblast differentiation. This suggests a reciprocal interaction between fibroblasts and the extracellular matrix composition that could enhance the development of lung fibrosis.  相似文献   

11.
The ECM is composed of various cell-adhesive glycoproteins, such as, fibronectin (FN), laminin (LN), and different types of glycosaminoglycans and proteoglycans. These building blocks of the ECM are linked together to form a dense and complex tissue that fills the interstitial spaces and comprises the boundaries between cells and tissues. The ECM is the major milieu in which immune cells function during inflammatory processes (Shimizu and Shaw, 1991; Yamada, 1991). Recognition of ECM-glycoproteins by immune cells is mediated by very late activation (VLA) receptors, also referred to as integrins of the β1-subfamily (Hynes, 1992). A prerequisite of lymphocyte-ECM interactions is activation of the cells by mitogens, or via their CD3-T cell receptor complex, either of these types of activation modulates the affinity of otherwise inactive β1-integrins (Shimizu, et al., 1990).  相似文献   

12.
13.
14.
An initial modeling approach was applied to analyze how a single, nonmotile, free-living, heterotrophic bacterial cell may optimize the deployment of its extracellular enzymes. Free-living cells live in a dilute and complex substrate field, and to gain enough substrate, their extracellular enzymes must be utilized efficiently. The model revealed that surface-attached and free enzymes generate unique enzyme and substrate fields, and each deployment strategy has distinctive advantages. For a solitary cell, surface-attached enzymes are suggested to be the most cost-efficient strategy. This strategy entails potential substrates being reduced to very low concentrations. Free enzymes, on the other hand, generate a radically different substrate field, which suggests significant benefits for the strategy if free cells engage in social foraging or experience high substrate concentrations. Swimming has a slight positive effect for the attached-enzyme strategy, while the effect is negative for the free-enzyme strategy. The results of this study suggest that specific dissolved organic compounds in the ocean likely persist below a threshold concentration impervious to biological utilization. This could help explain the persistence and apparent refractory state of oceanic dissolved organic matter (DOM). Microbial extracellular enzyme strategies, therefore, have important implications for larger-scale processes, such as shaping the role of DOM in ocean carbon sequestration.  相似文献   

15.
16.
Proclaimed “International Year of Biodiversity”, will 2010 hold all its promises? Reminder: initiated by the Convention on Biological Diversity ratified after the global summit in Rio de Janeiro, delegations from more than one hundred countries gathered in Johannesburg in 2002 and committed themselves to slowing the erosion of biodiversity by 2010. The European Union was more ambitious (or reckless?) and even spoke about halting this erosion (European Environment Agency, Progress towards the European 2010 biodiversity target, 2009) [1]! Well, that date has come and the overall appraisal that has been made formally in Nagoya in October this year was not so brilliant (see Leadley et al., 2010) [2]–but the same slogan has been launched for 2020! The aim here is not to repeat that appraisal, but, after considering the broad outlines, to evoke some of the issues and challenges that inevitably result from the great question of the protection and management of global biodiversity.  相似文献   

17.
Recent achievements in the biology and the function of adipose tissue have regarded white adipose tissue (WAT) as an important endocrine and secretory organ. Releasing a series of multiple-function mediators, WAT is involved in a wide spectrum of diseases, including not only cardiovascular and metabolic complications, such as atherosclerosis and type 2 diabetes, but also inflammatory- and immune-related disorders, such as rheumatoid arthritis (RA) and osteoarthritis (OA). A large number of these mediators, called adipokines, such as tumor necrosis factor alpha (TNF-α), leptin, adiponectin, resistin, chemerin, interleukin-6 (IL-6), visfatin, and so on have been identified and studied widely. Important advances related to these proteins shed new insights into the pathophysiological mechanisms of many complicated diseases, although details of which remain unclear. Adiponectin, one of the most widely investigated adipokine, has been shown to possess both anti- and pro-inflammatory effects. RA is a chronic systemic inflammatory-related autoimmune disease. Accumulated evidence has demonstrated that cytokines and adipokines play an important role in the pathogenesis of RA. In this review, we have summarized the most recent advances in adiponectin research in the context of RA, focusing primarily on its effect on RA-related cells, its regulation on pro-inflammatory cytokines, as well as its validation as a biomarker for RA.  相似文献   

18.
19.
20.
Exosomes: A Bubble Ride for Prions?   总被引:6,自引:0,他引:6  
In certain cell types, endosomal multivesicular bodies may fuse with the cell surface in an exocytic manner. During this process, the small 50-90-nm-diameter vesicles contained in their lumen are released into the extracellular environment. The released vesicles are called exosomes. Exosome secretion can be used by cells to eject molecules targeted to intraluminal vesicles of multivesicular bodies, but particular cell types exploit exosomes as intercellular communication devices for transfer of proteins and lipids between cells. The molecular composition of exosomes is determined by sorting events within endosomes that occur concomitantly with the generation of intraluminal vesicles. As other raft-associated components, the glycosylphosphatidylinositol-linked prion protein transits through multivesicular bodies. Recent findings in non-neuronal cell models indicate prion protein association with secreted exosomes. Thus, exosomes could constitute vehicles for transmission of the infectious prion protein, bypassing cell-cell contact in the dissemination of prions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号