首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 748 毫秒
1.
Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in plasma glucose and urinary paracetamol-glucuronide after infusion of [U-(13)C]glucose, [2-(13)C]glycerol, [1-(2)H]galactose, and paracetamol. In hepatocytes, glucose-6-phosphate (Glc-6-P) content, net glycogen synthesis, and lactate production from glucose and dihydroxyacetone increased strongly in the presence of S4048 (10 microm). In livers of S4048-treated rats (0.5 mg kg(-1)min(-)); 8 h) Glc-6-P content increased strongly (+440%), and massive glycogen accumulation (+1260%) was observed in periportal areas. Total glucose production was diminished by 50%. The gluconeogenic flux to Glc-6-P was unaffected (i.e. 33.3 +/- 2.0 versus 33.2 +/- 2.9 micromol kg(-1)min(-1)in control and S4048-treated rats, respectively). Newly synthesized Glc-6-P was redistributed from glucose production (62 +/- 1 versus 38 +/- 1%; p < 0.001) to glycogen synthesis (35 +/- 5% versus 65 +/- 5%; p < 0.005) by S4048. This was associated with a strong inhibition (-82%) of the flux through glucokinase and an increase (+83%) of the flux through glycogen synthase, while the flux through glycogen phosphorylase remained unaffected. In livers from S4048-treated rats, mRNA levels of genes encoding Glc-6-P hydrolase (approximately 9-fold), Glc-6-P translocase (approximately 4-fold), glycogen synthase (approximately 7-fold) and L-type pyruvate kinase (approximately 4-fold) were increased, whereas glucokinase expression was almost abolished. In accordance with unaltered gluconeogenic flux, expression of the gene encoding phosphoenolpyruvate carboxykinase was unaffected in the S4048-treated rats. Thus, acute inhibition of glucose-6-phosphatase activity by S4048 elicited 1) a repartitioning of newly synthesized Glc-6-P from glucose production into glycogen synthesis without affecting the gluconeogenic flux to Glc-6-P and 2) a cellular response aimed at maintaining cellular Glc-6-P homeostasis.  相似文献   

2.
To determine which efflux carriers are involved in hepatic phalloidin elimination, hepatobiliary [(3)H]-demethylphalloin (DMP) excretion was studied in normal Wistar rats and in Mrp2 deficient TR(-) Wistar rats as well as in normal wild-type FVB mice, Mdr1a,b(-/-) knockout mice, and Bcrp1(-/-) knockout mice by in situ bile duct/gallbladder cannulation. A subtoxic dose of 0.03 mg DMP/kg b.w. was used, which did not induce cholestasis in any tested animal. Excretion of DMP into bile was not altered in Mdr1a,b(-/-) mice or in Bcrp1(-/-) mice compared with wild-type FVB mice. Whereas 17.6% of the applied dose was excreted into bile of normal Wistar rats, hepatobiliary excretion decreased to 7.9% in TR(-) rats within 2 h after intravenous application. This decrease was not due to reduced cellular DMP uptake, as shown by normal expression of Oatp1b2 in livers of TR(-) rats and functional DMP uptake into isolated TR(-) rat hepatocytes. Tissue concentrations of phalloidin were also not altered in any of the transgenic mice. Interestingly, the decrease of biliary DMP excretion in the TR(-) rats was not followed by any increase of phalloidin accumulation in the liver but yielded a compensatory excretion of the toxin into urine, indicating that hepatocytes of TR(-) rats expelled phalloidin back into blood circulation.  相似文献   

3.
The biliary excretion of the sodium salts of 8-(2-ethanesulfonic acid)-3-ethyl-2,7,9-trimethyl-1,10-dihydro-11H-dipyrrin-1-one (xanthosulfonic acid) and a fluorescent analogue (8-desethyl-N,N'-carbonyl-kryptopyrromethenone-8-sulfonic acid) was compared in Mrp2-deficient (TR(-)) and normal rats. Both organic anions were excreted rapidly in bile in Mrp2-deficient rats, but the biliary excretion of the fluorescent sulfonate was impaired relative to normal controls. The rat clearly has efficient Mrp2-independent mechanisms for biliary efflux of these anions that are not used by bilirubin or its mono- and diglucuronides.  相似文献   

4.
To determine which efflux carriers are involved in hepatic phalloidin elimination, hepatobiliary [3H]-demethylphalloin (DMP) excretion was studied in normal Wistar rats and in Mrp2 deficient TR(−) Wistar rats as well as in normal wild-type FVB mice, Mdr1a,b(−/−) knockout mice, and Bcrp1(−/−) knockout mice by in situ bile duct/gallbladder cannulation. A subtoxic dose of 0.03 mg DMP/kg b.w. was used, which did not induce cholestasis in any tested animal. Excretion of DMP into bile was not altered in Mdr1a,b(−/−) mice or in Bcrp1(−/−) mice compared with wild-type FVB mice. Whereas 17.6% of the applied dose was excreted into bile of normal Wistar rats, hepatobiliary excretion decreased to 7.9% in TR(−) rats within 2 h after intravenous application. This decrease was not due to reduced cellular DMP uptake, as shown by normal expression of Oatp1b2 in livers of TR(−) rats and functional DMP uptake into isolated TR(−) rat hepatocytes. Tissue concentrations of phalloidin were also not altered in any of the transgenic mice. Interestingly, the decrease of biliary DMP excretion in the TR(−) rats was not followed by any increase of phalloidin accumulation in the liver but yielded a compensatory excretion of the toxin into urine, indicating that hepatocytes of TR(−) rats expelled phalloidin back into blood circulation.  相似文献   

5.
The biliary elimination of glycodihydrofusidate (GDHF), a structural analogue of bile salts, was studied in bile fistula rats. GDHF was excreted in bile with a maximal excretory rate (Tm = 0.80 mumol min-1 kg-1) which is much lower than bile salts Tm. The effects of dehydrocholate and taurocholate on GDHF biliary secretion suggest a stimulatory effect of bile salts on canalicular excretion of the drug. (a) When a bolus intravenous injection of 3 mumol of GDHF was followed after 2 min by a continuous dehydrocholate perfusion (10 mumol min-1 kg-1), biliary excretion of GDHF was increased in comparison with control rats. (b) Upon attaining the biliary Tm by continuous perfusion of GDHF at a rate of 1.35 mumol min-1 kg-1, infusion with either taurocholate or dehydrocholate increased its Tm to a similar degree. These results are similar to those previously obtained with the effects of bile salt infusions on the Tm of bromosulfophthalein. They suggest therefore that hepatic transport of GDHF and bile salts occurs by routes which are distinct for canalicular transport in spite of the striking structural similarities between GDHF and bile salts.  相似文献   

6.
Flavopiridol (FLAP) is a novel anticancer agent that is extensively glucuronidated in patients. Biliary excretion is the main elimination pathway of FLAP conjugates responsible for enterohepatic recirculation and for the main side effect diarrhea. To investigate the hepatic transport system for FLAP glucuronides, livers of Wistar and Mrp2-deficient TR- rats were perfused with FLAP (30 microM) in a single pass system. Biliary excretion and efflux into perfusate during a 60 min period greatly differ in TR- rats. While cumulative biliary excretion of M1 and M2 was significantly reduced to 4.3% and 5.4% efflux into perfusate was increased by 1.5 and 4.2-fold. This indicates that in control rats, M1 and M2 are almost exclusively eliminated into bile by Mrp2. Cumulative FLAP secretion into bile and perfusate, however, was non-significantly reduced by 36.7% and 43.2% in the mutant rat strain, suggesting that besides Mrp2, other transporters might also be involved in FLAP elimination. FLAP stimulates bile flow up to 24% in control rats, but secretion is nearly absent in TR- rats further supporting an efficient transport of FLAP glucuronides by Mrp2. FLAP (30 microM) also reversibly inhibited the Mrp2-mediated biliary elimination of bilirubin and bromsulphthalein in Wistar rats by 54% and 51%, respectively, indicating a competition with the elimination of Mrp2-specific substrates. In summary, we found that FLAP glucuronides are substrates of Mrp2 effectively inhibiting the biliary excretion of bilirubin. This may explain the increased serum bilirubin levels observed in cancer patients during FLAP therapy.  相似文献   

7.
The molecular mechanisms of the hepatic transport of B22956/1, a new gadolinium complex from the class of intravascular contrast agents for MRI, which undergoes extensive biliary elimination, were studied. Biliary and urinary elimination of B22956/1 were measured in normal and in mutant MRP2 lacking rats (TR(-)); cellular trafficking of the compound was assessed in wild and MRP1 or MRP2 transfected MDCKII cells. Eight hours after IV injection of B22956/1, 90+/-8% of the dose was recovered in the bile of normal rats. By contrast, in TR(-) rats, the biliary excretion was significantly lower (14+/-3%) while 55+/-9% of the compound was found in urine. In vitro, the cellular accumulation of B22956/1 was significantly lower in both MRP1 and MRP2 transfected cells as compared to wild type MDCKII cells, and the cellular efflux was prevented by the MRP inhibitor MK571, indicating the involvement of both MRP2 and MRP1 in the transport of B22956/1. Due to the distinct cellular localization of the proteins, MRP2 accounts for the biliary and urinary excretion of the compound, while MRP1 prevents cellular accumulation of the MRI agent. B22956/1 may be useful in clinical conditions where a defective biliary transport is present.  相似文献   

8.
This study correlates whole organ measurements of intracellular calcium concentration ([Ca(2+)](i)) with hormone-induced (epinephrine, vasopressin) changes of liver functions (glucose release, K(+) balance and bile flow). [Ca(2+)](i) was measured in the isolated perfused rat liver using the sensor Fura-2 and applying liver surface fluorescence spectroscopy. The technique was improved by (i) minimizing biliary elimination of the sensor by employing a rat strain deficient in canalicular organic anion transport (TR(-) mutation) and (ii) by correcting for changes of interfering intrinsic organ fluorescence that was shown to depend on the oxidation-reduction state (NAD(P)H content) of the organ. Epinephrine (50 nM) elicits an instantaneous peak rise of [Ca(2+)](i) to approx. 400 nM, followed by a sustained elevation that depends on the presence of extracellular Ca(2+). The rise of [Ca(2+)](i) coincides with initiation of glucose release, transient K(+) uptake, and transient stimulation of bile flow. Vasopressin (2 nM) exerts qualitatively similar effects. The transient rise of bile flow is attributed to Ca(2+)-mediated contraction of the pericanalicular actin-myosin web of hepatocytes.  相似文献   

9.
Eosine is excreted in rat bile unchanged, which makes it suitable for the study of age dependent changes in hepatic uptake and excretion. Bile flow was approximately 40 μl/kg/min in 20-day-old rats and twice as high in 30-day-old animals. In 60- and 120-day-old rats the bile volume was decreased, moreover in 220-day-old ones it fell to the level of 20-day-old rats. The biliary excretion of eosine (150 μmol/kg i.v.) was highest in 60-day-old rats, however, the biliary flow reached its peak in 30-day-old rats. After phenobarbital (PB) pretreatment (75 mg/kg i.p. daily for five days) each age group showed enhancement in liver weight and bile volume. On the other hand, the hepatic concentration of eosine did not change after PB pretreatment caused an increase in the biliary excretion of eosine in 30-, 60-, 120- and 220-day-old rats but no significant change in 20-day-old animals. Our results indicate that the hepatic transport in young rats was immature and was not induced by PB. However, PB can increase the low excretion rate in old rats.  相似文献   

10.
The aim of the present study was to investigate the effect of (-)-epigallocatechin-3-gallate (EGCG) on the pharmacokinetics of irinotecan (CPT-11) and its metabolite SN-38. EGCG was potentially used to modulate the ATPase activity of P-glycoprotein (P-gp). Experimental Sprague-Dawley rats were treated with EGCG (20mg/kg, i.v.) 10min before CPT-11 (10mg/kg, i.v.) administration, whereas the control group received CPT-11 (10mg/kg, i.v.) only. The biological samples were prepared by the protein precipitation and detected by HPLC-fluorescence detection which provided a good separation of CPT-11 and SN-38 within 10min. The pharmacokinetic data indicate that the area under the plasma concentration-time curves (AUC) of CPT-11 and SN-38 were increased by 57.7 and 18.3%, and AUC in bile were decreased by 15.8 and 46.8%, respectively, for the group pretreated with EGCG. The blood to bile distribution ratio (AUC(bile)/AUC(blood)) was significantly reduced after group coadministration of EGCG, it can be seen that the bile efflux transport system of CPT-11 and SN-38 may be markedly reduced by the treatment of EGCG which plays the role of P-gp inhibitor. In conclusion, EGCG was found to inhibit the transport of CPT-11 and SN-38 into the biliary elimination and their half-lives in plasma could be substantially prolonged. Based on the food-drug interaction, persons taking daily nutritional supplements should be warned of this interaction possibility.  相似文献   

11.
The biliary excretion of the carcinogen 6-hydroxy-methylbenzo[a]pyrene was investigated in rats after i.p. administration. Mutagenicity of the parent compound and its biliary metabolites was tested in Ames Salmonella/microsome mutagenicity assay. Approximately 40% of the dose administered (0.25-0.5 mg/kg) to the rats was excreted in the bile within 6 h. 6-Hydroxymethylbenzo[a]pyrene was excreted primarily as water-soluble metabolites, including glucuronide and sulfate conjugates. Negligible quantities of unchanged 6-hydroxymethylbenzo[a]pyrene were excreted in the bile. In the presence of Aroclor-induced S9, 6-hydroxymethylbenzo[a]pyrene was a potent mutagen. The mutagenicity of bile from rats treated with 6-hydroxymethylbenzo[a]pyrene was variable in the absence of an activation system. However, the same bile samples were mutagenic in the presence of beta-glucuronidase and/or S9. These results indicate that biliary metabolites of 6-hydroxymethylbenzo[a]pyrene can be metabolically activated to mutagenic species.  相似文献   

12.
Given the scarcity of donors, moderately fatty livers (FLs) are currently being considered as possible grafts for orthotopic liver transplantation (OLT), notwithstanding their poor tolerance to conventional cold preservation. The behaviour of parenchymal and sinusoidal liver cells during transplantation is being studied worldwide. Much less attention has been paid to the biliary tree, although this is considered the Achille''s heel even of normal liver transplantation. To evaluate the response of the biliary compartment of FLs to the various phases of OLT reliable markers are necessary. Previously we demonstrated that Alkaline Phosphatase was scarcely active in bile canaliculi of FLs and thus ruled it out as a marker. As an alternative, dipeptidylpeptidase-IV (DPP-IV), was investigated. This ecto-peptidase plays an important role in glucose metabolism, rapidly inactivating insulin secreting hormones (incretins) that are important regulators of glucose metabolism. DPP-IV inhibitors are indeed used to treat Type II diabetes. Neuropeptides regulating bile transport and composition are further important substrates of DPP-IV in the enterohepatic axis. DPP-IV activity was investigated with an azo-coupling method in the liver of fatty Zucker rats (fa/fa), using as controls lean Zucker (fa/+) and normal Wistar rats. Protein expression was studied by immunofluorescence with the monoclonal antibody (clone 5E8). In Wistar rat liver, DPP-IV activity and expression were high in the whole biliary tree, and moderate in sinusoid endothelial cells, in agreement with the literature. Main substrates of DPP-IV in hepatocytes and cholangiocytes could be incretins GLP-1 and GIP, and neuropeptides such as vasoactive intestinal peptide (VIP) and substance P, suggesting that these substances are inactivated or modified through the biliary route. In lean Zucker rat liver the enzyme reaction and protein expression patterns were similar to those of Wistar rat. In obese rat liver the patterns of DPP-IV activity and expression in hepatocytes reflected the morphological alterations induced by steatosis as lipid-rich hepatocytes had scarce activity, located either in deformed bile canaliculi or in the sinusoidal and lateral domains of the plasma membrane. These findings suggest that bile canaliculi in steatotic cells have an impaired capacity to inactivate incretins and neuropeptides. Incretin and/or neuropeptide deregulation is indeed thought to play important roles in obesity and insulin-resistance. No alteration in enzyme activity and expression was found in the upper segments of the biliary tree of obese respect to lean Zucker and Wistar rats. In conclusion, this research demonstrates that DPP-IV is a promising in situ marker of biliary functionality not only of normal but also of fatty rats. The approach, initially devised to investigate the behaviour of the liver during the various phases of transplantation, appears to have a much higher potentiality as it could be further exploited to investigate any pathological or stressful conditions involving the biliary tract (i.e., metabolic syndrome and cholestasis) and the response of the biliary tract to therapy and/or to surgery.Key words: Dipeptidylpeptidase-IV, fatty liver, incretins, neuropeptides, biliary tree, bile canaliculi, hepatocytes.  相似文献   

13.
The influence of a three-day lithium treatment on the biliary electrolyte and bile acid output was determined in 20- and 105-day-old rats. The osmolarity of bile and the biliary concentrations of cations (Na+, K+, Ca++, H+) and chloride were higher in untreated young rats than in adults, although bile flow and bile acid excretion rates of the young and adult animals were comparable. Lithium increased the biliary excretion of sodium, potassium and calcium and decreased the excretion of chloride and bicarbonate ions in both age groups. In contrast, lithium treatment reduced bile acid excretion only in adult rats. The lithium-induced alterations in biliary ion elimination may be caused by an intracellular replacement of sodium and/or potassium. These results indicate that after lithium treatment cation loss occurs in the young as well as in the adult organism not only via urine and faeces but also via bile.  相似文献   

14.
Biliary secretion of bile acid glucuronides was studied in control rats and in rats with a congenital defect in hepatobiliary transport of organic anions (GY rats). In control animals, hepatobiliary transport of [3H]lithocholic acid 3-O-glucuronide and [3H]cholic acid 3-O-glucuronide was efficient (greater than 95% in 1 h) and comparable to that of [14C]taurocholic acid. Secretion of both glucuronides was impaired in GY rats (24% and 71% at 1 h), whereas that of taurocholate was similar to control values. However, recovery of the glucuronides in bile was nearly complete within 24 h; virtually no radioactivity was found in urine. In control rats, biliary secretion of lithocholic acid 3-O-glucuronide, but not that of cholic acid 3-O-glucuronide or taurocholate, could be delayed by simultaneous infusion of dibromosulphthalein. In mutant rats, dibromosulphthalein infusion was also able to inhibit secretion of cholic acid 3-O-glucuronide. [3H]Hydroxyetianic acid, a C20 short-chain bile acid, was secreted by control rats as a mixture of 20% carboxyl-linked and 80% hydroxyl-linked (3-O-)glucuronide; secretion was very efficient (99% in 1 h). In GY rats, secretion was drastically impaired (16% at 1 h and 74% over a 24-h period). Initially, the mutant secreted more carboxyl- than hydroxyl-linked glucuronide, but the ratio reached that of control animals after 24 h. The rates of formation of both types of hydroxyetianic acid glucuronide by hepatic microsomes from mutant rats were similar or even slightly higher than those of control microsomes. These findings indicate that bile acid 3-O-glucuronides, but probably not carboxyl-linked glucuronides, are secreted into bile by a transport system shared with organic anions such as conjugated bilirubin and dibromosulphthalein, but different from that for amino acid-conjugated bile acids.  相似文献   

15.
The kidneys and liver are the major routes for organic anion elimination. We have recently shown that acute obstructive jaundice is associated with increased systemic and renal elimination of two organic anions, p-aminohippurate and furosemide, principally excreted through urine. This study examined probable adaptive mechanisms involved in renal elimination of bromosulfophthalein (BSP), a prototypical organic anion principally excreted in bile, in rats with acute obstructive jaundice. Male Wistar rats underwent bile duct ligation (BDL rats). Pair-fed sham-operated rats served as controls. BSP renal clearance was performed by conventional techniques. Renal organic anion-transporting polypeptide 1 (Oatp1) expression was evaluated by immunoblotting and IHC. Excreted, filtered, and secreted loads of BSP were all higher in BDL rats compared with Sham rats. The higher BSP filtered load resulted from the increase in plasma BSP concentration in BDL rats, because glomerular filtration rate showed no difference with the Sham group. The increase in the secreted load might be explained by the higher expression of Oatp1 observed in apical membranes from kidneys of BDL animals. This likely adaptation to hepatic injury, specifically in biliary components elimination, might explain, at least in part, the huge increase in BSP renal excretion observed in this experimental model. (J Histochem Cytochem 57:449–456, 2009)  相似文献   

16.
1. The biliary excretion of [14C]trimophonium iodide [tri[14C]methyl(3-hydroxyphenyl)ammonium iodide] was studied in normal Wistar animals and in jaundiced homozygous Gunn rats. 2. In normal Wistar rats small amounts of radioactivity (approx. 3% of the dose in 4h) were excreted in bile as two glucuronide conjugates, i.e. [14C]trimophonium glucuronide [tri[14C]methyl-(3-oxyphenyl)ammonium glucuronide] (85%) and 3-di[14C]methylaminophenyl glucuronide (10–15%). Only minor amounts of the unchanged drug were detected in bile. 3. In the homozygous jaundiced Gunn rat large amounts of radioactivity (26% of the dose in 4h) were eliminated in bile as [14C]trimophonium glucuronide alone. The quantitative excretion of this metabolite in Gunn rat bile was about ten times that in normal animals. 4. It is proposed that the biochemical lesion in the homozygous Gunn rat may indirectly affect the biliary transport of exogenous glucuronides across the canalicular membrane.  相似文献   

17.
1. The postnatal development of the biliary excretion of phenolsulfonphthalein (PSP) was studied in male Wistar rats. 2. Following i.v. injection of PSP at 200 mumol/kg body wt, a maximal biliary excretion of 175 +/- 10 nmol/min/100 g body wt and 32 +/- 5 nmol/min/100 g body wt was reached for unconjugated and conjugated PSP, respectively, in the adult group. 3. The maximal biliary excretion of conjugated PSP was significantly lower in the 20-, 30- and 40-day-old groups as compared to the adults. The excretion of unconjugated dye was also significantly lower in 20- and 30-day-old rats. 4. The postnatal development of PSP excretion was unrelated to changes in the activity of UDP-glucuronosyltransferase. The importance of other factors is also discussed.  相似文献   

18.
1. The metabolism of sodium cortisone 21-[(35)S]sulphate was investigated in rats. 2. Quantitative and qualitative experiments showed that substantial amounts of (35)SO(4) (2-) appeared in the urine of free-ranging rats receiving the ester. 3. Whole-body radioautograms indicated considerable biliary elimination of (35)S and also pointed to the liver as the site of metabolism. 4. When female rats with bile-duct cannulae received sodium cortisone 21-[(35)S]sulphate approx. 70% of the dose appeared in the bile as a doubly conjugated steroid (metabolite I). This metabolite was identified as 3alpha-(beta-d-glucopyranuronosido)- 17alpha-hydroxy-21-[(35)S]sulpho-oxy-5alpha-pregnane-11,20-dione. 5. When metabolite I was administered to a rat with a bile-duct cannula 90% of the dose appeared in the bile unchanged. After the administration (intraperitoneally or orally) of metabolite I to free-ranging rats considerable amounts of (35)SO(4) (2-) appeared in the urine. 6. The route by which (35)SO(4) (2-) might be produced from cortisone [(35)S]sulphate in free-ranging animals is discussed.  相似文献   

19.
This study was carried out to determine the circadian rhythm of active renal and biliary excretion of ampicillin. Sprague-Dawley male rats, housed under a light-dark (12 h: 12 h) cycle, were used in these studies. Rats received an i.v. bolus of ampicillin (50 mg/kg) at 0800, 1200, 1600, 2000, 2400, and 0400. Plasma, bile, and urine were collected. There was a significant circadian rhythm in the renal and biliary clearances of ampicillin. Clearance was increased approximately twofold during the active cycle compared with the resting cycle. No change in volume of distribution was noted. Therefore, the mean residence time of ampicillin was significantly lower during the active cycle. Since the majority of ampicillin that is excreted into the urine and bile is actively secreted via the anion carrier-mediated pathway, the circadian rhythm of glomerular filtration cannot explain the variation observed in this study. Changes in renal/hepatic blood flow could explain, in part, the circadian rhythm observed in these studies; however, variability in either the capacity of the anionic carrier or the binding affinity of the drug for the carrier cannot be ruled out.  相似文献   

20.
Extracts of leaves from the plant Stevia rebaudiana Bertoni have been used in the traditional treatment of diabetes in Paraguay and Brazil. Recently, we demonstrated a direct insulinotropic effect in isolated mouse islets and the clonal beta cell line INS-1 of the glycoside stevioside that is present in large quantity in these leaves. Type 2 diabetes is a chronic metabolic disorder that results from defects in both insulin and glucagon secretion as well as insulin action. In the present study we wanted to unravel if stevioside in vivo exerts an antihyperglycaemic effect in a nonobese animal model of type 2 diabetes. An i.v. glucose tolerance test (IVGT) was carried out with and without stevioside in the type 2 diabetic Goto-Kakizaki (GK) rat, as well as in the normal Wistar rat. Stevioside (0.2 g/kg BW) and D-glucose (2.0 g/kg BW) were administered as i.v. bolus injections in anaesthetized rats. Stevioside significantly suppressed the glucose response to the IVGT in GK rats (incremental area under the curve (IAUC): 648 +/- 50 (stevioside) vs 958 +/- 85 mM x 120 min (control); P < 0.05) and concomitantly increased the insulin response (IAUC: 51116 +/- 10967 (stevioside) vs 21548 +/- 3101 microU x 120 min (control); P < 0.05). Interestingly, the glucagon level was suppressed by stevioside during the IVGT, (total area under the curve (TAUC): 5720 +/- 922 (stevioside) vs 8713 +/- 901 pg/ml x 120 min (control); P < 0.05). In the normal Wistar rat stevioside enhanced insulin levels above basal during the IVGT (IAUC: 79913 +/- 3107 (stevioside) vs 17347 +/- 2882 microU x 120 min (control); P < 0.001), however, without altering the blood glucose response (IAUC: 416 +/- 43 (stevioside) vs 417 +/- 47 mM x 120 min (control)) or the glucagon levels (TAUC: 5493 +/- 527 (stevioside) vs 5033 +/- 264 pg/ml x 120 min (control)). In conclusion, stevioside exerts antihyperglycaemic, insulinotropic, and glucagonostatic actions in the type 2 diabetic GK rat, and may have the potential of becoming a new antidiabetic drug for use in type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号