首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
IL-6 mediates its activity through a cell surface receptor composed of a signal transducing protein, CD130, and a ligand-binding protein which exists in membrane-bound form (CD126) or in soluble form (sIL-6R alpha). Interestingly, sIL-6R alpha combined with IL-6 is able to interact with CD130 leading to the intracellular cascade of activation. In the present study, using flow cytometry, we show that stromal cells from human bone marrow (BMSC) express CD130 but not CD126. We demonstrate that BMSC are responsive to IL-6 only in the presence of exogenous sIL-6R alpha. Indeed, exogenous sIL-6R alpha induces in BMSC the production of its own ligand, IL-6, and of both MMP-1 and MMP-2, two matrix metalloproteinases involved in bone resorption and in tumour spreading, respectively. Since myeloma cells release sIL-6R alpha in the close vicinity of BMSC, these data suggest a role for this factor in the pathophysiology of multiple myeloma, a B-cell malignancy dependent on IL-6 for its growth and characterized by bone destruction.  相似文献   

9.
10.
Interleukin-6 (IL-6) is a cytokine with many activities. It has functions in the regulation of the immune system and the nervous system. Furthermore, IL-6 is involved in liver regeneration and in the metabolic control of the body. On target cells, IL-6 binds to an 80 kDa IL-6 receptor (IL-6R). The complex of IL-6 and IL-6R associates with a second protein, gp130, which thereupon dimerizes and initiates intracellular signaling. Whereas gp130 is expressed on all cells, IL-6R is only present on few cells in the body including hepatocytes and some leukocytes. Cells, which do not express IL-6R cannot respond to the cytokine, since gp130 alone has no measurable affinity for IL-6. Interestingly, a soluble form of IL-6R (sIL-6R) comprising the extracellular portion of the receptor can bind IL-6 with a similar affinity as the membrane bound IL-6R. The complex of IL-6 and sIL-6R can bind to gp130 on cells, which do not express the IL-6R, and which are unresponsive to IL-6. This process has been called trans-signaling. Here I will review published evidence that IL-6 trans-signaling is pro-inflammatory whereas classic IL-6 signaling via the membrane bound IL-6R is needed for regenerative or anti-inflammatory activities of the cytokine. Furthermore, the detailed knowledge of IL-6 biology has important consequences for therapeutic strategies aimed at the blockade of the cytokine IL-6.  相似文献   

11.
12.
13.
14.
Human osteoblasts produce interleukin-6 (IL-6) and respond to IL-6 in the presence of soluble IL-6 receptor (sIL-6R), but the cell surface expression of IL-6R and the mechanism of sIL-6R production are largely unknown. Three different human osteoblast-like cell lines (MG-63, HOS, and SaOS-2) and bone marrow-derived primary human osteoblasts expressed both IL-6R and gp130 as determined by flow cytometry and immunoprecipitation. However, the membrane-bound IL-6R was nonfunctional, as significant tyrosine phosphorylation of gp130 did not occur in the presence of IL-6. Phorbol myristate acetate induced a dramatic increase of both IL-6R shedding (i.e. the production of sIL-6R) and IL-6 release in osteoblast cultures, but the cell surface expression of gp130 remained unchanged. IL-6 complexed with sIL-6R, either exogenously introduced or derived from the nonfunctional cell surface form by shedding, induced rapid tyrosine phosphorylation of gp130. This effect was inhibited by neutralizing antibodies to either sIL-6R or gp130, indicating that the gp130 activation was induced by IL-6/sIL-6R/gp130 interaction. Protein kinase C inhibitors blocked phorbol myristate acetate-induced and spontaneous shedding of IL-6R resulting in the absence of sIL-6R in the culture medium, which in turn also prevented the activation of gp130. In conclusion, human osteoblasts express cell surface IL-6R, which is unable to transmit IL-6-induced signals until it is shed into its soluble form. This unique mechanism provides the flexibility for osteoblasts to control their own responsiveness to IL-6 via the activation of an IL-6R sheddase, resulting in an immediate production of functionally active osteoblast-derived sIL-6R.  相似文献   

15.
16.
IL-10 is an antiinflammatory cytokine secreted by activated macrophages and Th2 cells. IL-10 secretion promotes the down-regulation of proinflammatory cytokine synthesis and the development of Th2 responses. In macrophages, proinflammatory cytokines appear to be induced by similar mechanisms, but the IL-10 induction mechanisms have not been examined. We have analyzed the murine IL-10 promoter in the RAW264.7 macrophage line activated with LPS. A comprehensive mutant analysis revealed only one element upstream of the core promoter that was essential for promoter induction. A refined mutant analysis localized this element to nucleotides -89 to -78, and gel shift experiments revealed that it represents a nonconsensus binding site for Sp1. The functional relevance of Sp1 was supported by the high affinity of the interaction, the close correlation between the nucleotides required for Sp1 binding and promoter function, and the ability of an Sp1 consensus sequence to substitute for the -89/-78 promoter sequence. Evidence that Sp1 may be a target of signaling pathways involved in IL-10 induction was provided by the exclusive requirement for the Sp1 binding site, by the ability of the Sp1 site to confer induction to a heterologous promoter, and by the delineation of an Sp1 domain that can mediate induction. No relevant contribution from Rel, C/EBP (CCAAT/enhancer-binding protein), or AP-1 binding sites, which regulate most proinflammatory cytokine promoters, was observed. Together, these results demonstrate that IL-10 gene regulation is distinct from the regulation of proinflammatory cytokine genes, and suggest that Sp1 may be a central mediator of IL-10 induction.  相似文献   

17.
Contradictory results have been reported on the effects and role of IL-6 on proteoglycan (PG) synthesis. Having shown recently that in vitro IL-6 depends on the presence of soluble IL-6 receptor alpha (sIL-6Ralpha) to fully exert its effects on chondrocytes, we conducted the present study to analyse the effects of IL-6 on PG synthesis by human articular chondrocytes in the presence of sIL-6Ralpha. PG synthesis was quantified by specific ELISA using a monoclonal antibody (MAB) raised against the keratan sulphate region of PG as a capture antibody, and a MAB to the acid binding region as a detector. It proved specific for PG from primary (differentiated) chondrocytes. In the absence of sIL-6Ralpha, IL-6 had a slight inhibitory effect on PG synthesis by articular chondrocytes. sIL-6Ralpha alone also had slight but consistent inhibitory effects. When adding sIL-6Ralpha at concentrations of 50 ng/ml corresponding to levels found in synovial fluid, the effects of IL-6 increased consistently. However, even at optimal concentrations (30-100 ng/ml of IL-6sR per 100 ng/ml of IL-6), maximal inhibition (48%) did not equal the degree of inhibition achieved by IL-1 at 1 ng/ml (66%). Similar effects, although slightly weaker, were observed on osteoarthritic cells. Dexamethasone, over a wide range of concentrations, markedly enhanced proteoglycan synthesis and completely reversed the downregulatory effects of IL-1 and IL-6 + sIL-6Ralpha. The effects of IL-1 were partially inhibited by an anti-IL-6 antibody. Finally, unlike IL-1, IL-6 + sIL-6Ralpha only weakly stimulated nitric oxide (NO) synthesis. In conclusion, sIL-6Ralpha potentiates the inhibitory effect of IL-6 on PG synthesis by articular chondrocytes, but the overall effect of IL-6 + IL-6sR is moderate compared to the effects of IL-1.  相似文献   

18.
The soluble IL-6 receptor (sIL-6R) can increase IL-6-induced signalling by forming a complex with IL-6 and membrane-bound gp130 (the receptor beta chain which transduces signals). The conditions affecting this response to sIL-6R were studied using fibrinogen release from HepG2 hepatocytes. Exogenous sIL-6R had no effect alone or in the presence of a submaximal concentration of IL-6, but increased responses to supramaximal IL-6 concentrations in a concentration-related manner. Dexamethasone increased the expression of the membrane IL-6R and endogenous sIL6R release, and increased responses to supramaximal but not submaximal IL-6 concentrations. The amount of endogenous sIL-6R released is relatively small and is unlikely to influence the effects of the exogenous sIL-6R. The observed concentration-related decrease in sIL-6R production in the presence of IL-6 may indicate internalization of ligand/receptor complexes. This would significantly decrease the amount of IL-6R (soluble or membrane) available for signalling and limit continued functional response later in the cultures. These data indicate that the major factor influencing responses to exogenous sIL-6R is an excess of IL-6 which is necessary to form complexes with the sIL-6R, which can then interact with gp130 to increase signalling.  相似文献   

19.
Generation of the soluble interleukin-6 receptor (sIL-6R) is a prerequisite for pathogenic IL-6 trans-signaling, which constitutes a distinct signaling pathway of the pleiotropic cytokine interleukin-6 (IL-6). Although in vitro experiments using ectopically overexpressed IL-6R and candidate proteases revealed major roles for the metalloproteinases ADAM10 and ADAM17 in IL-6R shedding, the identity of the protease(s) cleaving IL-6R in more physiological settings, or even in vivo, remains unknown. By taking advantage of specific pharmacological inhibitors and primary cells from ADAM-deficient mice we established that endogenous IL-6R of both human and murine origin is shed by ADAM17 in an induced manner, whereas constitutive release of endogenous IL-6R is largely mediated by ADAM10. Although circulating IL-6R levels are altered in various diseases, the origin of blood-borne IL-6R is still poorly understood. It has been shown previously that ADAM17 hypomorphic mice exhibit unaltered levels of serum sIL-6R. Here, by quantification of serum sIL-6R in protease-deficient mice as well as human patients we also excluded ADAM10, ADAM8, neutrophil elastase, cathepsin G, and proteinase 3 from contributing to circulating sIL-6R. Furthermore, we ruled out alternative splicing of the IL-6R mRNA as a potential source of circulating sIL-6R in the mouse. Instead, we found full-length IL-6R on circulating microvesicles, establishing microvesicle release as a novel mechanism for sIL-6R generation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号