首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HumanNa+-K+-ATPase11,21, and 31heterodimers were expressed individually in yeast, and ouabainbinding and ATP hydrolysis were measured in membrane fractions. Theouabain equilibrium dissociation constant was 13-17 nM for11 and 31at 37°C and 32 nM for 21, indicatingthat the human -subunit isoforms have a similar high affinity forcardiac glycosides. K0.5 values for antagonism of ouabain binding by K+ were ranked in order as follows:2 (6.3 ± 2.4 mM) > 3(1.6 ± 0.5 mM)  1 (0.9 ± 0.6 mM),and K0.5 values for Na+ antagonismof ouabain binding to all heterodimers were 9.5-13.8 mM. Themolecular turnover for ATP hydrolysis by11 (6,652 min1) was abouttwice as high as that by 31 (3,145 min1). These properties of the human heterodimersexpressed in yeast are in good agreement with properties of the humanNa+-K+-ATPase expressed in Xenopusoocytes (G Crambert, U Hasler, AT Beggah, C Yu, NN Modyanov, J-DHorisberger, L Lelievie, and K Geering. J Biol Chem275: 1976-1986, 2000). In contrast to Na+ pumpsexpressed in Xenopus oocytes, the21 complex in yeast membranes wassignificantly less stable than 11 or31, resulting in a lower functionalexpression level. The 21 complex was also more easily denatured by SDS than was the11 or the31 complex.

  相似文献   

2.
To determinethe mechanism of fatty acid modulation of rabbit pulmonary arterylarge-conductance Ca2+-activated K+(BKCa) channel activity, we studied effects of fatty acidsand other lipids on channel activity in excised patches withpatch-clamp techniques. The structural features of the fatty acidrequired to increase BKCa channel activity (or averagenumber of open channels, NPo) were identified tobe the negatively charged head group and a sufficiently long (C > 8) carbon chain. Positively charged lipids like sphingosine, which havea sufficiently long alkyl chain (C  8), produced a decrease inNPo. Neutral and short-chain lipids did notalter NPo. Screening of membrane surface chargewith high-ionic-strength bathing solutions (330 mM K+ or130 mM K+, 300 mM Na+) did not alter themodulation of the BKCa channel NPoby fatty acids and other charged lipids, indicating that channelmodulation is unlikely to be due to an alteration of the membraneelectric field or the attraction of local counterions to the channel.Fatty acids and other negatively charged lipids were able to modulate BKCa channel activity in bathing solutions containing 0 mMCa2+, 20 mM EGTA, suggesting that calcium is not requiredfor this modulation. Together, these results indicate that modulationof BKCa channels by fatty acids and other charged lipidsmost likely occurs by their direct interaction with the channel proteinitself or with some other channel-associated component.

  相似文献   

3.
We reported previously that inhibition ofNa+-K+-Cl cotransporter isoform 1 (NKCC1) by bumetanide abolishes high extracellular K+concentration ([K+]o)-induced swelling andintracellular Cl accumulation in rat cortical astrocytes.In this report, we extended our study by using cortical astrocytes fromNKCC1-deficient (NKCC1/) mice. NKCC1 protein andactivity were absent in NKCC1/ astrocytes.[K+]o of 75 mM increased NKCC1 activityapproximately fourfold in NKCC1+/+ cells (P < 0.05) but had no effect in NKCC1/ astrocytes.Intracellular Cl was increased by 70% inNKCC1+/+ astrocytes under 75 mM[K+]o (P < 0.05) butremained unchanged in NKCC1/ astrocytes. Baselineintracellular Na+ concentration([Na+]i) in NKCC1+/+ astrocyteswas 19.0 ± 0.5 mM, compared with 16.9 ± 0.3 mM[Na+]i in NKCC1/ astrocytes(P < 0.05). Relative cell volume ofNKCC1+/+ astrocytes increased by 13 ± 2% in 75 mM[K+]o, compared with a value of 1.0 ± 0.5% in NKCC1/ astrocytes (P < 0.05).Regulatory volume increase after hypertonic shrinkage was completelyimpaired in NKCC1/ astrocytes.High-[K+]o-induced 14C-labeledD-aspartate release was reduced by ~30% inNKCC1/ astrocytes. Our study suggests that stimulationof NKCC1 is required for high-[K+]o-inducedswelling, which contributes to glutamate release from astrocytes underhigh [K+]o.

  相似文献   

4.
The role of the Na+ pump2-subunit in Ca2+ signaling was examined inprimary cultured astrocytes from wild-type(2+/+ = WT) mouse fetuses and thosewith a null mutation in one [2+/ = heterozygote (Het)] or both [2/ = knockout (KO)] 2 genes. Na+ pump catalytic() subunit expression was measured by immunoblot; cytosol[Na+] ([Na+]cyt) and[Ca2+] ([Ca2+]cyt) weremeasured with sodium-binding benzofuran isophthalate and fura 2 byusing digital imaging. Astrocytes express Na+ pumpswith both 1- (80% of total ) and2- (20% of total ) subunits. Het astrocytesexpress 50% of normal 2; those from KO express none.Expression of 1 is normal in both Het and KO cells.Resting [Na+]cyt = 6.5 mM in WT, 6.8 mMin Het (P > 0.05 vs. WT), and 8.0 mM in KO cells(P < 0.001); 500 nM ouabain (inhibits only2) equalized [Na+]cyt at 8 mMin all three cell types. Resting[Ca2+]cyt = 132 nM in WT, 162 nM in Het,and 196 nM in KO cells (both P < 0.001 vs. WT).Cyclopiazonic acid (CPA), which inhibits endoplasmic reticulum (ER)Ca2+ pumps and unloads the ER, induces transient (inCa2+-free media) or sustained (in Ca2+-repletemedia) elevation of [Ca2+]cyt. TheseCa2+ responses to 10 µM CPA were augmented in Het as wellas KO cells. When CPA was applied in Ca2+-free media, thereintroduction of Ca2+ induced significantly largertransient rises in [Ca2+]cyt (due toCa2+ entry through store-operated channels) in Het and KOcells than in WT cells. These results correlate with published evidencethat 2 Na+ pumps andNa+/Ca2+ exchangers are confined to plasmamembrane microdomains that overlie the ER. The data suggest thatselective reduction of 2 Na+ pump activitycan elevate local [Na+] and, viaNa+/Ca2+ exchange, [Ca2+] in thetiny volume of cytosol between the plasma membrane and ER. This, inturn, augments adjacent ER Ca2+ stores and therebyamplifies Ca2+ signaling without elevating bulk[Na+]cyt.

  相似文献   

5.
Investigation of the role ofindividual protein kinase C (PKC) isozymes in the regulation ofNa+ channels has been largely limited by the lack ofisozyme-selective modulators. Here we used a novel peptide-specificactivator (V1-7) of PKC and other peptide isozyme-specificinhibitors in addition to the general PKC activator phorbol12-myristate 13-acetate (PMA) to dissect the role of individual PKCs inthe regulation of the human cardiac Na+ channel hH1,heterologously expressed in Xenopus oocytes. Peptides wereinjected individually or in combination into the oocyte. Whole cellNa+ current (INa) was recorded usingtwo-electrode voltage clamp. V1-7 (100 nM) and PMA (100 nM)inhibited INa by 31 ± 5% and 44 ± 8% (at 20 mV), respectively. These effects were not seen with thescrambled peptide for V1-7 (100 nM) or the PMA analog4-phorbol 12,13-didecanoate (100 nM). However, V1-7-and PMA-induced INa inhibition was abolished byV1-2, a peptide-specific antagonist of PKC. Furthermore,PMA-induced INa inhibition was not altered by100 nM peptide-specific inhibitors for -, -, -, or PKC. PMAand V1-7 induced translocation of PKC from soluble toparticulate fraction in Xenopus oocytes. This translocationwas antagonized by V1-2. In native rat ventricular myocytes,PMA and V1-7 also inhibited INa; thisinhibition was antagonized by V1-2. In conclusion, the resultsprovide evidence for selective regulation of cardiac Na+channels by PKC isozyme.

  相似文献   

6.
We investigated the effects ofclinically relevant ethanol concentrations (5-20 mM) on thesingle-channel kinetics of bovine aortic smooth muscle maxi-K channelsreconstituted in lipid bilayers (1:1palmitoyl-oleoyl-phosphatidylethanolamine:palmitoyl-oleoyl-phosphatidylcholine). Ethanol at 10 and 20 mMdecreased the channel open probability (Po) by75 ± 20.3% mainly by increasing the mean closed time (+82 to+960%, n = 7). In some instances, ethanol alsodecreased the mean open time (40.8 ± 22.5%). ThePo-voltage relation in the presence of 20 mMethanol exhibited a rightward shift in the midpoint of voltageactivation (V1/2  17 mV), a slightlysteeper relationship (change in slope factor, k,  2.5 mV), and a decreased maximum Po (from~0.82 to ~0.47). Interestingly, channels inhibited by ethanol atlow Ca2+ concentrations (2.5 µM) were veryresistant to ethanol in the presence of increased Ca2+ ( 20 µM). Alcohol consumption in clinically relevant amounts may alterthe contribution of maxi-K channels to the regulation of arterial tone.

  相似文献   

7.
Growthfactors affect a variety of epithelial functions. We examined theability of TGF- to modulate epithelial ion transport andpermeability. Filter-grown monolayers of human colonic epithelia, T84and HT-29 cells, were treated with TGF- (0.1-100 ng/ml,15 min-72 h) or infected with an adenoviral vector encodingTGF- (Ad-TGF) for 144 h. Ion transport (i.e., short-circuitcurrent, Isc) and transepithelial resistance(TER) were assessed in Ussing chambers. Neither recombinant TGF- norAd-TGF infection affected baseline Isc;however, exposure to 1 ng/ml TGF- led to a significant (30-50%) reduction in the Isc responses toforskolin, vasoactive intestinal peptide, and cholera toxin (agentsthat evoke Cl secretion via cAMP mobilization) and to thecell-permeant dibutyryl cAMP. Pharmacological analysis of signalingpathways revealed that the inhibition of cAMP-driven epithelialCl secretion by TGF- was blocked by pretreatment withSB-203580, a specific inhibitor of p38 MAPK, but not by inhibitors ofJNK, ERK1/2 MAPK, or phosphatidylinositol 3'-kinase. TGF- enhanced the barrier function of the treated monolayers by up to threefold asassessed by TER; however, this event was temporally displaced from thealtered Isc response, being statisticallysignificant only at 72 h posttreatment. Thus, in addition toTGF- promotion of epithelial barrier function, we show that thisgrowth factor also reduces responsiveness to cAMP-dependentsecretagogues in a chronic manner and speculate that this serves as abraking mechanism to limit secretory enteropathies.

  相似文献   

8.
Tumor necrosisfactor (TNF)- has a biphasic effect on heart contractility andstimulates phospholipase A2 (PLA2) incardiomyocytes. Because arachidonic acid (AA) exerts a dual effect onintracellular Ca2+ concentration([Ca2+]i) transients, we investigated thepossible role of AA as a mediator of TNF- on[Ca2+]i transients and contraction withelectrically stimulated adult rat cardiac myocytes. At a lowconcentration (10 ng/ml) TNF- produced a 40% increase in theamplitude of both [Ca2+]i transients andcontraction within 40 min. At a high concentration (50 ng/ml) TNF-evoked a biphasic effect comprising an initial positive effect peakingat 5 min, followed by a sustained negative effect leading to50-40% decreases in [Ca2+]i transientsand contraction after 30 min. Both the positive and negative effects ofTNF- were reproduced by AA and blocked by arachidonyltrifluoromethylketone (AACOCF3), an inhibitor of cytosolic PLA2.Lipoxygenase and cyclooxygenase inhibitors reproduced the high-doseeffects of TNF- and AA. The negative effects of TNF- and AA werealso reproduced by sphingosine and were abrogated by the ceramidaseinhibitor n-oleoylethanolamine. These results point out thekey role of the cytosolic PLA2/AA pathway in mediating thecontractile effects of TNF-.

  相似文献   

9.
The length of the silent lag time beforeelevation of the cytosolic free Ca2+ concentration([Ca2+]i) differs between individualpancreatic -cells. One important question is whether thesedifferences reflect a random phenomenon or whether the length of lagtime is inherent in the individual -cell. We compared the lag times,initial dips, and initial peak heights for[Ca2+]i from two consecutive glucosestimulations (with either 10 or 20 mM glucose) in individualob/ob mouse -cells with the fura 2 technique in amicrofluorimetric system. There was a strong correlation between thelengths of the lag times in each -cell (10 mM glucose:r = 0.94, P < 0.001; 20 mM glucose:r = 0.96, P < 0.001) as well as between theinitial dips in [Ca2+]i (10 mM glucose:r = 0.93, P < 0.001; 20 mM glucose:r = 0.79, P < 0.001) and between theinitial peak heights (10 mM glucose: r = 0.51, P < 0.01; 20 mM glucose: r = 0.77, P < 0.001). These data provide evidence that theresponse pattern, including both the length of the lag time and thedynamics of the subsequent [Ca2+]i, isspecific for the individual -cell.

  相似文献   

10.
Polyaminesare essential for early mucosal restitution that occurs by epithelialcell migration to reseal superficial wounds after injury. Normalintestinal epithelial cells are tightly bound in sheets, but they needto be rapidly disassembled during restitution. -Catenin is involvedin cell-cell adhesion, and its tyrosine phosphorylation causesdisassembly of adhesion junctions, enhancing the spreading of cells.The current study determined whether polyamines are required for thestimulation of epithelial cell migration by altering -catenintyrosine phosphorylation. Migration of intestinal epithelial cells(IEC-6 line) after wounding was associated with an increase in-catenin tyrosine phosphorylation, which decreased the bindingactivity of -catenin to -catenin. Polyamine depletion by-difluoromethylornithine reduced cytoplasmic free Ca2+concentration ([Ca2+]cyt), preventedinduction of -catenin phosphorylation, and decreased cell migration.Elevation of [Ca2+]cyt induced by theCa2+ ionophore ionomycin restored -cateninphosphorylation and promoted migration in polyamine-deficient cells.Decreased -catenin phosphorylation through the tyrosine kinaseinhibitor herbimycin-A or genistein blocked cell migration, which wasaccompanied by reorganization of cytoskeletal proteins. These resultsindicate that -catenin tyrosine phosphorylation plays a criticalrole in polyamine-dependent cell migration and that polyamines induce-catenin tyrosine phosphorylation at least partially through[Ca2+]cyt.

  相似文献   

11.
Cell-attached recordings revealedK+ channel activity in basolateral membranes ofguinea pig distal colonic crypts. Inwardly rectified currents wereapparent with a pipette solution containing 140 mM K+.Single-channel conductance () was 9 pS at the resting membrane potential. Another inward rectifier with  of 19 pS was observed occasionally. At a holding potential of 80 mV,  was 21 and 41 pS,respectively. Identity as K+ channels was confirmed afterpatch excision by changing the bath ion composition. From reversalpotentials, relative permeability of Na+ overK+ (PNa/PK)was 0.02 ± 0.02, withPRb/PK = 1.1 andPCl/PK < 0.03. Spontaneous open probability (Po) of the 9-pSinward rectifier (gpKir) was voltageindependent in cell-attached patches. Both a low(Po = 0.09 ± 0.01) and a moderate(Po = 0.41 ± 0.01) activity mode wereobserved. Excision moved gpKir to the mediumactivity mode; Po ofgpKir was independent of bath Ca2+activity and bath acidification. Addition of Cl andK+ secretagogues altered Po ofgpKir. Forskolin or carbachol (10 µM)activated the small-conductance gpKir inquiescent patches and increased Po inlow-activity patches. K+ secretagogues, either epinephrine(5 µM) or prostaglandin E2 (100 nM), decreasedPo of gpKir in activepatches. This gpKir may be involved inelectrogenic secretion of Cl and K+ acrossthe colonic epithelium, which requires a large basolateral membraneK+ conductance during maximal Cl secretionand, presumably, a lower K+ conductance during primaryelectrogenic K+ secretion.

  相似文献   

12.
Theactin-binding proteins dystrophin and -actinin are members of afamily of actin-binding proteins that may link the cytoskeleton tomembrane proteins such as ion channels. Previous work demonstrated thatthe activity of Ca2+ channels can be regulated by agentsthat disrupt or stabilize the cytoskeleton. In the present study, weemployed immunohistochemical and electrophysiological techniques toinvestigate the potential regulation of cardiac L-type Ca2+channel activity by dystrophin and -actinin in cardiac myocytes andin heterologous cells. Both actin-binding proteins were found tocolocalize with the Ca2+ channel in mouse cardiac myocytesand to modulate channel function. Inactivation of the Ca2+channel in cardiac myocytes from mice lacking dystrophin(mdx mice) was reduced compared with that in wild-typemyocytes, voltage dependence of activation was shifted by 5 mV to morepositive potentials, and stimulation by the -adrenergic pathway andthe dihydropyridine agonist BAY K 8644 was increased. Furthermore, heterologous coexpression of the Ca2+ channel with muscle,but not nonmuscle, forms of -actinin was also found to reduceinactivation. As might be predicted from a reduction ofCa2+ channel inactivation, a prolonging of the mouseelectrocardiogram QT was observed in mdx mice. These resultssuggest a combined role for dystrophin and -actinin in regulatingthe activity of the cardiac L-type Ca2+ channel and apotential mechanism for cardiac dysfunction in Duchenne and Beckermuscular dystrophies.

  相似文献   

13.
Whole cell patch-clamprecordings were made from cultured myenteric neurons taken from murineproximal colon. The micropipette contained Cs+ to removeK+ currents. Depolarization elicited a slowly activatingtime-dependent outward current (Itdo), whereasrepolarization was followed by a slowly deactivating tail current(Itail). Itdo andItail were present in ~70% of neurons. Weidentified these currents as Cl currents(ICl), because changing the transmembraneCl gradient altered the measured reversal potential(Erev) of both Itdo andItail with that for Itailshifted close to the calculated Cl equilibrium potential(ECl). ICl areCa2+-activated Cl current[ICl(Ca)] because they were Ca2+dependent. ECl, which was measured from theErev of ICl(Ca) using agramicidin perforated patch, was 33 mV. This value is more positivethan the resting membrane potential (56.3 ± 2.7 mV), suggestingmyenteric neurons accumulate intracellular Cl.-Conotoxin GIVA [0.3 µM; N-type Ca2+ channelblocker] and niflumic acid [10 µM; knownICl(Ca) blocker], decreased theICl(Ca). In conclusion, these neurons haveICl(Ca) that are activated by Ca2+entry through N-type Ca2+ channels. These currents likelyregulate postspike frequency adaptation.

  相似文献   

14.
Toxin- (T)from the Brazilian scorpion Tityusserrulatus venom caused a concentration- andtime-dependent increase in the release of norepinephrine andepinephrine from bovine adrenal medullary chromaffin cells. T was~200-fold more potent than veratridine judged fromEC50 values, although the maximalsecretory efficacy of veratridine was 10-fold greater than that of T(1.2 vs. 12 µg/ml of catecholamine release). The combination of both toxins produced a synergistic effect that was particularly drastic at 5 mM extracellular Ca2+concentration([Ca2+]o),when 30 µM veratridine plus 0.45 µM T were used. T (0.45 µM) doubled the basal uptake of45Ca2+,whereas veratridine (100 µM) tripled it. Again, a drastic synergism in enhancing Ca2+ entry was seenwhen T and veratridine were combined; this was particularlypronounced at 5 mM[Ca2+]o.Veratridine induced oscillations of cytosolicCa2+ concentration([Ca2+]i)in single fura 2-loaded cells without elevation of basal levels. Incontrast, T elevated basal[Ca2+]ilevels, causing only small oscillations. When added together, T andveratridine elevated the basal levels of[Ca2+]iwithout causing large oscillations. T shifted the current-voltage (I-V) curve forNa+ channel current to the left.The combination of T with veratridine increased the shift of theI-V curve to the left, resulting in agreater recruitment of Na+channels at more hyperpolarizing potentials. This led to enhanced andmore rapid accumulation of Na+ inthe cell, causing cell depolarization, the opening of voltage-dependent Ca2+ channels, andCa2+ entry and secretion.

  相似文献   

15.
Purines regulate intraocular pressure. Adenosine activatesCl channels of nonpigmented ciliary epithelial cellsfacing the aqueous humor, enhancing secretion. Tamoxifen and ATPsynergistically activate Cl channels of pigmented ciliaryepithelial (PE) cells facing the stroma, potentially reducing netsecretion. The actions of nucleotides alone on Cl channelactivity of bovine PE cells were studied by electronic cell sorting,patch clamping, and luciferin/luciferase ATP assay. Clchannels were activated by ATP > UTP, ADP, and UDP, but not by 2-methylthio-ATP, all at 100 µM. UTP triggered ATP release. The second messengers Ca2+, prostaglandin (PG)E2,and cAMP activated Cl channels without enhancing effectsof 100 µM ATP. Buffering intracellular Ca2+activity with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'- tetraacetic acidor blocking PGE2 formation with indomethacininhibited ATP-triggered channel activation. The Rp stereoisomerof 8-bromoadenosine 3',5'-cyclic monophosphothioate inhibited proteinkinase A activity but mimicked 8-bromoadenosine 3',5'-cyclicmonophosphate. We conclude that nucleotides can act at >1 P2Yreceptor to trigger a sequential cascade involving Ca2+,PGE2, and cAMP. cAMP acts directly on Clchannels of PE cells, increasing stromal release and potentially reducing net aqueous humor formation and intraocular pressure.

  相似文献   

16.
Peroxynitrite causes endothelial cell monolayer barrier dysfunction   总被引:7,自引:0,他引:7  
Nitric oxide (·NO) attenuates hydrogen peroxide(H2O2)-mediated barrier dysfunction in culturedporcine pulmonary artery endothelial cells (PAEC) (Gupta MP, Ober MD,Patterson C, Al-Hassani M, Natarajan V, and Hart, CM. Am JPhysiol Lung Cell Mol Physiol 280: L116-L126, 2001). However,·NO rapidly combines with superoxide (O) to formthe powerful oxidant peroxynitrite (ONOO), which wehypothesized would cause PAEC monolayer barrier dysfunction. To testthis hypothesis, we treated PAEC with ONOO (500 µM) or3-morpholinosydnonimine hydrochloride (SIN-1; 1-500 µM).SIN-1-mediated ONOO formation was confirmed by monitoringthe oxidation of dihydrorhodamine 123 to rhodamine. BothONOO and SIN-1 increased albumin clearance(P < 0.05) in the absence of cytotoxicity and alteredthe architecture of the cytoskeletal proteins actin and -catenin asdetected by immunofluorescent confocal imaging.ONOO-induced barrier dysfunction was partially reversibleand was attenuated by cysteine. Both ONOO and SIN-1nitrated tyrosine residues, including those on -catenin and actin,and oxidized proteins in PAEC. The introduction of actin treated withONOO into PAEC monolayers via liposomes alsoresulted in barrier dysfunction. These results indicate thatONOO directly alters endothelial cytoskeletal proteins,leading to barrier dysfunction.

  相似文献   

17.
Neuronal7 nicotinic acetylcholine receptors (nAChRs) arepermeable to Ca2+ and other divalent cations. Wecharacterized the modulation of the pharmacological properties ofnondesensitizing mutant (L247T andS240T/L247T) 7 nAChRs bypermeant (Ca2+, Ba2+, and Sr2+) andimpermeant (Cd2+ and Zn2+) divalent cations.7 receptors were expressed in Xenopus oocytes and studied with two-electrode voltage clamp. Extracellular permeant divalent cations increased the potency and maximal efficacy of ACh,whereas impermeant divalent cations decreased potency and maximalefficacy. The antagonist dihydro--erythroidine (DHE) was a strongpartial agonist of L247T andS240T/L247T 7 receptors in thepresence of divalent cations but was a weak partial agonist in thepresence of impermeant divalent cations. Mutation of the"intermediate ring" glutamates (E237A) inL247T 7 nAChRs eliminated Ca2+conductance but did not alter the Ca2+-dependent increasein ACh potency, suggesting that site(s) required for modulation are onthe extracellular side of the intermediate ring. The difference betweenpermeant and impermeant divalent cations suggests that sites within thepore are important for modulation by divalent cations.

  相似文献   

18.
During maturation of oocytes,Cl conductance (GCl) oscillatesand intracellular pH (pHi) increases. ElevatingpHi permits the protein synthesis essential to maturation.To examine whether changes in GCl andpHi are coupled, the Cl channel ClC-0 washeterologously expressed. Overexpressing ClC-0 elevatespHi, decreases intracellular Cl concentration([Cl]i), and reduces volume. Acuteacidification with butyrate does not activate acid extrusion inClC-0-expressing or control oocytes. The ClC-0-induced pHichange increases after overnight incubation at extracellular pH 8.5 butis unaltered after incubation at extracellular pH 6.5. Membranedepolarization did not change pHi. In contrast, hyperpolarization elevates pHi. Thus neither membranedepolarization nor acute activation of acid extrusion accounts for theClC-0-dependent alkalinization. Overnight incubation in lowextracellular Cl concentration increases pHiand decreases [Cl]i in control and ClC-0expressing oocytes, with the effect greater in the latter. Incubationin hypotonic, low extracellular Cl solutions preventedpHi elevation, although the decrease in[Cl]i persisted. Taken together, ourobservations suggest that KCl loss leads to oocyte shrinkage, whichtransiently activates acid extrusion. In conclusion, expressing ClC-0in oocytes increases pHi and decreases[Cl]i. These parameters are coupled viashrinkage activation of proton extrusion. Normal, cyclical changes ofoocyte GCl may exert an effect onpHi via shrinkage, thus inducing meiotic maturation.

  相似文献   

19.
Patch-clamping and cell imageanalysis techniques were used to study the expression of thevolume-activated Cl current,ICl(vol), and regulatory volume decrease (RVD)capacity in the cell cycle in nasopharyngeal carcinoma cells (CNE-2Z). Hypotonic challenge caused CNE-2Z cells to swell and activated aCl current with a linear conductance, negligibletime-dependent inactivation, and a reversal potential close to theCl equilibrium potential. The sequence of anionpermeability was I > Br > Cl > gluconate. The Cl channelblockers tamoxifen, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB),and ATP inhibited ICl(vol). Synchronous cultures of cells were obtained by the mitotic shake-off technique and by adouble chemical-block (thymidine and hydroxyurea) technique. Theexpression of ICl(vol) was cell cycle dependent,being high in G1 phase, downregulated in S phase, butincreasing again in M phase. Hypotonic solution activated RVD, whichwas cell cycle dependent and inhibited by the Cl channelblockers NPPB, tamoxifen, and ATP. The expression of ICl(vol) was closely correlated with the RVDcapacity in the cell cycle, suggesting a functional relationship.Inhibition of ICl(vol) by NPPB (100 µM)arrested cells in G0/G1. The data also suggest that expression of ICl(vol) and RVD capacity areactively modulated during the cell cycle. The volume-activatedCl current associated with RVD may therefore play animportant role during the cell cycle progress.

  相似文献   

20.
Freshly dispersedinterstitial cells from the rabbit urethra were studied by using theperforated-patch technique. When cells were voltage clamped at 60 mVand exposed to 10 µM norepinephrine (NE) at 80-s intervals, eitherlarge single inward currents or a series of oscillatory inward currentsof diminishing amplitude were evoked. These currents were blocked byeither phentolamine (1 µM) or prazosin (1 µM), suggesting that theeffects of NE were mediated via 1-adrenoceptors.NE-evoked currents were depressed by the blockers ofCa2+-activated Cl currents, niflumic acid (10 µM), and 9-anthracenecarboxylic acid (9-AC, 1 mM). The reversalpotential of the above currents changed in a predictable manner whenthe Cl equilibrium potential was altered, againsuggesting that they were due to activation of a Clconductance. NE-evoked currents were decreased by 10 µM cyclopiazonic acid, suggesting that they were dependent on store-releasedCa2+. Inhibition of NE-evoked currents by the phospholipaseC inhibitor 2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate(100 µM) suggested that NE releases Ca2+ via an inositol1,4,5-trisphosphate (IP3)-dependent mechanism. Theseresults support the idea that stimulation of1-adrenoceptors releases Ca2+ from anIP3-sensitive store, which in turn activatesCa2+-activated Cl current in freshlydispersed interstitial cells of the rabbit urethra. This elevates slowwave frequency in these cells and may underlie the mechanismresponsible for increased urethral tone during nerve stimulation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号