首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalase and superoxide dismutase in Escherichia coli   总被引:9,自引:0,他引:9  
We assessed the roles of intrabacterial catalase and superoxide dismutase in the resistance of Escherichia coli to killing by neutrophils. E. coli in which the synthesis of superoxide dismutase and catalase were induced by paraquat 10-fold and 5-fold, respectively, did not resist killing by neutrophils. When bacteria were allowed to recover from the toxicity of paraquat for 1 h on ice and for 30 min at 37 degrees C, they still failed to resist killing by neutrophils. Induction of the synthesis of catalase 9-fold by growth in the presence of phenazine methosulfate did not render E. coli resistant to killing by either neutrophils or by H2O2 itself. The lack of protection by intrabacterial catalase from killing by neutrophils could not be attributed to an impermeable bacterial membrane; the evolution of O2 from H2O2 was no less rapid in suspensions of E. coli than in lysates. The failure of intrabacterial catalase or superoxide dismutase to protect bacteria from killing by neutrophils might indicate either that the flux of O-2 and H2O2 in the phagosome is too great for the intrabacterial enzymes to alter or that the site of injury is at the bacterial surface.  相似文献   

2.
Escherichia coli growing anaerobically respond to NO3- with a 3-fold induction of the iron-containing superoxide dismutase. Mutants lacking nitrate reductase do not show this response. Anaerobically grown cells also contain an inactive form of the manganese-containing superoxide dismutase (MnSOD) which can be activated by addition of Mn(II) salts in the presence of acidic guanidinium chloride, followed by dialysis against neutral buffer. Direct addition of Mn(II) to a neutral solution of the inactive MnSOD does not impart activity. This inactive MnSOD thus behaves as would the apoenzyme or the enzyme bearing a metal other than Mn(II) at its active sites. Terminal electron acceptors, such as NO3- or trimethylamine N-oxide, increase the amount of inactive MnSOD produced by anaerobic E. coli. Paraquat, which is itself ineffective in this regard, markedly augments the effect of these terminal electron acceptors. It appears that flow of electrons to sinks such as NO3- or trimethylamine N-oxide, facilitated by paraquat, is sufficient to elicit biosynthesis of the MnSOD protein and that O2- is not needed for this process. Yet, oxygenation and concomitant O2- production do appear important for the insertion of manganese into the growing MnSOD polypeptide, possibly because O-2 oxidizes Mn(II) to Mn(III), and the latter is the valence state most effective in combining with the apoenzyme.  相似文献   

3.
The rapid inactivation of aconitase by O2-, previously seen to occur in vitro, was explored in vivo. A fraction of the aconitase in growing, aerobic, Escherichia coli is inactive at any instant but can be activated by imposition of anaerobic conditions. This reactivation occurred in the absence of protein synthesis and was inhibited by the ferrous chelator alpha,alpha'-dipyridyl. This fraction of inactive, but activatable, aconitase was increased by augmenting O2- production with paraquat, decreased by elevation of superoxide dismutase, and increased by inhibiting reactivation with alpha,alpha'-dipyridyl. The balance between inactive and active aconitase thus represented a pseudoequilibrium between inactivation by O2- and reactivation by restoration of Fe(II), and it provided, for the first time, a measure of the steady-state concentration of O2- within E. coli. On this basis, [O2-] was estimated to be approximately 20-40 pM in aerobic log phase E. coli containing wild type levels of superoxide dismutase and approximately 300 pM in a mutant strain lacking superoxide dismutase.  相似文献   

4.
Rats fed ethanol (1.74 +/- 0.12 g/day/100 g body wt for 12 weeks) showed a 45% increased microsomal production of O-2 (2.23 +/- 0.14 nmol/min/mg protein) and a 28% increased content of endoplasmic reticulum protein (26.8 +/- 1.4 mg/g liver). This could lead, at substrate saturation, to a 86% increased cytosolic production of O-2 which is not compensated by cytosolic superoxide dismutase levels that remain normal. It is claimed that this unbalance between O-2 production and superoxide dismutase leads to a peroxidative stress in agreement with the 54% increased spontaneous liver chemiluminescence (37 +/- 2 cps/cm2) measured in the ethanol-treated rats. Hydroperoxide-induced chemiluminescence was 57, 43, and 28% higher, respectively, in homogenates, mitochondria, and microsomes isolated from ethanol-treated rats as compared with controls. Vitamins E and A were more effective inhibitors of the hydroperoxide-stimulated chemiluminescence in the liver homogenates from ethanol-treated rats as compared with the effect on the homogenates from control animals. The results are consistent with a peroxidative stress in chronic alcoholism leading to increased lipoperoxidation and decreased levels of antioxidants.  相似文献   

5.
Riebe O  Fischer RJ  Bahl H 《FEBS letters》2007,581(29):5605-5610
Desulfoferrodoxin (cac2450) of Clostridium acetobutylicum was purified after overexpression in E. coli. In an in vitro assay the enzyme exhibited superoxide reductase activity with rubredoxin (cac2778) of C. acetobutylicum as the proximal electron donor. Rubredoxin was reduced by ferredoxin:NADP(+) reductase from spinach and NADPH. The superoxide anions, generated from dissolved oxygen using Xanthine and Xanthine oxidase, were reduced to hydrogen peroxide. Thus, we assume that desulfoferrodoxin is the key factor in the superoxide reductase dependent part of an alternative pathway for detoxification of reactive oxygen species in this obligate anaerobic bacterium.  相似文献   

6.
Discovery of superoxide reductase: an historical perspective   总被引:3,自引:0,他引:3  
For more than 30 years, the only enzymatic system known to catalyze the elimination of superoxide was superoxide dismutase, SOD. SOD has been found in almost all organisms living in the presence of oxygen, including some anaerobic bacteria, supporting the notion that superoxide is a key and general component of oxidative stress. Recently, a new concept in the field of the mechanisms of cellular defense against superoxide has emerged. It was discovered that elimination of superoxide in some anaerobic and microaerophilic bacteria could occur by reduction, a reaction catalyzed by a small metalloenzyme thus named superoxide reductase, SOR. Having played a major role in this discovery, we describe here how the concept of superoxide reduction emerged and how it was experimentally substantiated independently in our laboratory.Abbreviations Dfx desulfoferrodoxin - SOD superoxide dismutase - SOR superoxide reductase  相似文献   

7.
Aerobic life requires the presence of antioxidant enzymes, such as superoxide dismutase, catalase, and peroxidase to eliminate deleterious oxygen derivatives. Treponema pallidum, a microaerophilic bacterium responsible for venereal syphilis, is an interesting organism because it lacks all of the above-mentioned enzymes, as deduced from its recently sequenced genome. In this paper, we describe a gene in T. pallidum with sequence homologies to a new class of antioxidant systems, named superoxide reductases, recently isolated from sulfate-reducing bacteria (Lombard, M., Fontecave, M., Touati, D., and Nivière, V. (2000) J. Biol. Chem. 275, 115-121). We report that (i) expression of the T. pallidum gene fully restored to a superoxide dismutase-deficient Escherichia coli mutant the ability to grow under aerobic conditions; (ii) the corresponding protein displays a strong superoxide reductase activity; and (iii) the T. pallidum protein contains only one mononuclear nonheme ferrous center, able to reduce superoxide selectively and efficiently, whereas previously characterized superoxide reductase from Desulfoarculus baarsii contains an additional rubredoxin-like ferric center. These results suggest that T. pallidum antioxidant defenses rely on a new class of superoxide reductase and raise the question of the importance of superoxide reductases in mechanisms for detoxifying superoxide radicals.  相似文献   

8.
Hyperoxia enhances lung and liver nuclear superoxide generation   总被引:3,自引:0,他引:3  
Porcine lung and liver nuclei generated superoxide (O-2) at a rate which increased with increasing oxygen concentration. NADH-dependent O-2 generation increased from 0 to 2.21 +/- 0.11 nmol/min per mg protein for lung nuclei and from 0.16 +/- 0.09 to 1.34 +/- 0.14 nmol/min per mg protein for liver nuclei, when oxygen concentration increased from 0 to 100%. NADPH-dependent O-2 generation increased similarly in liver nuclei (from 0.20 +/- 0.09 to 1.20 +/- 0.12 nmol/min per mg protein), while lung nuclei produced only 0.45 +/- 0.09 nmol/min per mg protein at 100% oxygen. NADH and NADPH had an additive effect on O-2 generation by liver nuclei, yielding 2.58 +/- 0.21 nmol/min per mg protein at 100% oxygen. Very little or no superoxide dismutase activity was present in washed nuclear preparations. The oxygen-dependence of nuclear O-2 generation shows that nuclear-derived partially reduced species of oxygen may affect nuclear function during hyperoxia or other metabolic situations where overproduction of oxygen radicals is problematic.  相似文献   

9.
Highly purified iron superoxide dismutase was obtained from Escherichia coli B using a modification of the procedure of Yost and Jridovich (Yost, F. J., Jr., and Fridovich, I. (1973) J. Biol. Chem. 248, 4905-4908). The protein contained 1.8 +/- 0.2 atoms of iron per 38,700 g of protein. We have found that cyanide does not bind to the Fe3+ ion of iron dismutase but fluoride and azide have moderately large binding constants. Optical and electron paramagnetic resonance (EPR) measurements suggested that 2 fluoride ions could associate with each iron atom with the first having an association constant of approximately 520 M-1 and the second with an estimated value of 24 M-1. Activity measurements yielded an inhibition constant for fluoride of 30 M-1. At room temperature only one azide binds to the Fe3+ (K = 760 M-1) and this does not interfere with superoxide dismutase activity. Upon freezing solutions of iron superoxide dismutase in the presence of excess azide their color changes from yellow to pink. Combined EPR and optical titrations with azide suggest the presence of two binding sites on Fe3+ with only the first being occupied at room temperature and the second binding azide only upon freezing the solution. The results suggest that each Fe3+ ion of this superoxide dismutase has two coordination positions available for interaction with solute molecules but only one is necessary for catalysis of the superoxide dismutation reaction. The EPR, optical, and circular dichroism spectra of the native protein and the various fluoride and azide complexes are presented.  相似文献   

10.
Copper, zinc superoxide dismutase (CuZnSOD) from bovine erythrocytes and iron superoxide dismutase from Escherichia coli (FeSOD) were immobilized on 3-mercaptopropionic acid (MPA)-modified gold electrodes, respectively. The characterization of the SOD electrodes showed a quasi-reversible, electrochemical redox behavior with a formal potential of 47+/-4 mV and -154+/-5 mV (vs. Ag/AgCl, 1 M KCl) for surface adsorbed CuZnSOD and FeSOD, respectively. The heterogeneous electron transfer rate constants were determined to be about 65 and 35/s, respectively. Covalent fixation of both SODs was also feasible with only slight changes in the formal potential. The interaction of superoxide radicals (O(2)(-)) with the SOD electrode was investigated. No catalytic current could be observed. However, due to the fast cyclic redox reaction of SOD with superoxide, the communication of the protein with the electrode was strongly influenced. The amperometric detection of superoxide radicals is discussed.  相似文献   

11.
We have studied the time course of the absorption of bovine liver catalase after pulse radiolysis with oxygen saturation in the presence and absence of superoxide dismutase. In the absence of superoxide dismutase, catalase produced Compound I and another species. The formation of Compound I is due to the reaction of ferric catalase with hydrogen peroxide, which is generated by the disproportionation of the superoxide anion (O-2). The kinetic difference spectrum showed that the other species was neither Compound I nor II. In the presence of superoxide dismutase, the formation of this species was found to be inhibited, whereas that of Compound I was little affected. This suggests that this species is formed by the reaction of ferric catalase with O-2 and is probably the oxy form of this enzyme (Compound III). The rate constant for the reaction of O-2 and ferric catalase increased with a decrease in pH (cf. 4.5 X 10(4) M-1 s-1 at pH 9 and 4.6 X 10(6) M-1 s-1 at pH 5.). The pH dependence of the rate constant can be explained by assuming that HO2 reacts with this enzyme more rapidly than O-2.  相似文献   

12.
alpha, beta-Dihydroxyisovalerate dehydratase. A superoxide-sensitive enzyme   总被引:18,自引:0,他引:18  
Increasing the intracellular flux of O-2 by incubating aerobic Escherichia coli with paraquat or plumbagin markedly lowered the alpha, beta-dihydroxyisovalerate dehydratase activity detectable in extracts from these cells. This effect was not seen in the absence of dioxygen and was exacerbated by inhibiting protein biosynthesis with chloramphenicol. These effects of paraquat and of plumbagin were both time- and concentration-dependent. Transfer of E. coli from aerobic to anaerobic conditions caused a rebound of the dehydratase activity, in the continued presence of paraquat and of chloramphenicol, indicating the presence of a mechanism for reactivating this enzyme. The instability of the dehydratase activity in cell extracts was exacerbated by selective removal of superoxide dismutase, but not of catalase, by immunoprecipitation. Addition of exogenous superoxide dismutase reversed the effect of immunoprecipitation; whereas catalase or inactive superoxide dismutase were ineffective. We conclude that the dehydratase is inactivated by O-2. This could account for the bacteriostatic effects of dioxygen and of paraquat.  相似文献   

13.
14.
15.
Superoxide dismutases convert superoxide anions to molecular oxygen and hydrogen peroxide. These enzymes constitute one of the major defense mechanisms of cells against oxidative stress and play a role in the pathogenesis of certain invasive bacteria. In this study, we reported for the first time here that Providencia alcalifaciens, a member of the family Enterobacteriaceae, produces a superoxide dismutase (SOD) as a major protein in culture supernatants. This protein was purified by a series of column chromatographic separations. The N-terminal amino acid sequence of the protein was determined to be highly homologous to manganese superoxide dismutase of Escherichia coli or Salmonella reported. The gene (sodA) encoding for SOD of P. alcalifaciens was cloned and sequenced. The sodA-encoded protein has a molecular weight of about 23.5 kDa, and the DNA sequence of P. alcalifaciens sodA gene (627 bp) has about 83% identity to the E. coli SOD gene. We constructed a sodA deletion mutant and its complemented strain of P. alcalifaciens. In J774, a macrophage cell line, the sodA deletion mutant was more susceptible to killing by macrophages than the wildtype strain and its complemented strain. When we injected the mutant strain, its complemented strain and wildtype strain intraperitoneally into DDY strain mice, we found that the sodA deletion mutant proved significantly less virulent while the complemented strain recovered the virulence to the same level of wildtype strain of P. alcalifaciens. These results suggested that manganese superoxide dismutase plays an important role in intracellular survival of P. alcalifaciens.  相似文献   

16.
Growth of Escherichia coli B in simple media enriched with Mn(II) resulted in the elevation of the manganese-containing superoxide dismutase, whereas growth in such medium enriched with iron caused increased content of the iron-containing superoxide dismutase. Enrichment of the medium with Co(II), Cu(II), Mo(VI), Zn(II), or Ni(II) had no effect. The inductions of superoxide dismutase by Mn(II) or by Fe(II) were dioxygen dependent, but these metals did not affect the CN- -resistant respiration of E. coli B and did not influence the increase in the CN- -resistant respiration caused by paraquat. Mn(II) and paraquat acted synergistically in elevating the superoxide dismutase content, and Mn(II) reduced the growth inhibition imposed by paraquat, E. coli grown in the complex 3% Trypticase soy broth (BBL Microbiology Systems)-0.5% yeast extract-0.2% glucose medium contained more superoxide dismutase than did cells grown in the simple media and were less responsive to enrichment of the medium with Mn(II) or Fe(II). Nevertheless, in the presence of paraquat, inductions of superoxide dismutase by these metals could be seen even in the Trypticase-yeast extract-glucose medium. On the basis of these observations we propose that the apo-superoxide dismutases may act as autogenous repressors and that Mn(II) and Fe(II) increase the cell content of the corresponding enzymes by speeding the conversion of the apo- to the holoenzymes.  相似文献   

17.
An Escherichia coli double mutant, sodAsodB, that is deficient in both bacterial superoxide dismutases (Mn superoxide dismutase and iron superoxide dismutase) is unable to grow on minimal medium in the presence of oxygen and exhibits increased sensitivity to paraquat and hydrogen peroxide. Expression of the evolutionarily unrelated eukaryotic CuZn superoxide dismutase in the sodAsodB E. coli mutant results in a wild-type phenotype with respect to aerobic growth on minimal medium and in resistance to paraquat and hydrogen peroxide. This supports the hypothesis that superoxide dismutation is the in vivo function of these proteins. Analysis of the growth of sodAsodB cells containing plasmids encoding partially active CuZn superoxide dismutases, produced by in vitro mutagenesis, shows a correlation between cell growth and enzyme activity. Thus, the sodAsodB strain provides a controlled selection for varying levels of superoxide dismutase activity.  相似文献   

18.
Pseudomonas aeruginosa is a strict aerobe which is likely exposed to oxygen reduction products including superoxide and hydrogen peroxide during the metabolism of molecular oxygen. To counterbalance the potentially hazardous effects of elevated endogenous levels of superoxide, most aerobic organisms possess one or more superoxide dismutases or compounds capable of scavenging superoxide. We have previously shown that P. aeruginosa possesses both an iron- and a manganese-cofactored superoxide dismutase (D. J. Hassett, L. Charniga, K. A. Bean, D. E. Ohman, and M. S. Cohen, Infect. Immun. 60:328-336, 1992). In this study, the genes encoding manganese (sodA)- and iron (sodB)- cofactored superoxide dismutase were cloned by using a cosmid library of P. aeruginosa FRD which complemented an Escherichia coli (JI132) strain devoid of superoxide dismutase activity. The sodA and sodB genes of P. aeruginosa, when cloned into a high-copy-number vector (pKS-), partially restored the aerobic growth rate defect, characteristic of the Sod- strain, to that of the wild type (AB1157) when grown in Luria broth. The nucleotide sequences of sodA and sodB have open reading frames of 612 and 579 bp that encode dimeric proteins of 22.9 and 21.2 kDa, respectively. These data were also supported by the results of in vitro expression studies. The deduced amino acid sequence of the P. aeruginosa manganese and iron superoxide dismutase revealed approximately 50 and 67% similarity with manganese and iron superoxide dismutases from E. coli, respectively. There was also remarkable similarity with iron and manganese superoxide dismutases from other phyla. The mRNA start site of sodB was mapped to 174 bp upstream of the ATG codon. A likely promoter with similarity to the -10 and -35 consensus sequence of E. coli was observed upstream of the ATG start codon of sodB. Regions sequenced 519 bp upstream of the sodA electrophoresis, sodA gene revealed no such promoter, suggesting an alternative mode of control for sodA. By transverse field electrophoresis, sodA and sodB were mapped to the 71- to 75-min region on the P. aeruginosa PAO1 chromosome. Strikingly, mucoid alginate-producing bacteria generated greater levels of manganese superoxide dismutase than nonmucoid revertants, suggesting that mucoid P. aeruginosa is responding to oxidative stress and/or changes in the redox status of the cell.  相似文献   

19.
Neelaredoxin is a mononuclear iron protein widespread among prokaryotic anaerobes and facultative aerobes, including human pathogens. It has superoxide scavenging activity, but the exact mechanism by which this process occurs has been controversial. In this report, we present the study of the reaction of superoxide with the reduced form of neelaredoxin from the hyperthermophilic archaeon Archaeoglobus fulgidus by pulse radiolysis. This protein reduces superoxide very efficiently (k = 1.5 x 10(9) m(-1)s(-1)), and the dismutation activity is rate-limited, in steady-state conditions, by the much slower superoxide oxidation step. These data show unambiguously that the superfamily of neelaredoxin-like proteins (including desulfoferrodoxin) presents a novel type of reactivity toward superoxide, a result of particular relevance for the understanding of both oxygen stress response mechanisms and, in particular, how pathogens may respond to the oxidative burst produced by the defense cells in eukaryotes. The actual in vivo functioning of these enzymes will depend strongly on the cell redox status. Further insight on the catalytic mechanism was obtained by the detection of a transient intermediate ferric species upon oxidation of neelaredoxin by superoxide, detectable by visible spectroscopy with an absorption maximum at 610 nm, blue-shifted approximately 50 nm from the absorption of the resting ferric state. The role of the iron sixth ligand, glutamate-12, in the reactivity of neelaredoxin toward superoxide was assessed by studying two site-directed mutants: E12Q and E12V.  相似文献   

20.
G D Lawrence  D T Sawyer 《Biochemistry》1979,18(14):3045-3050
Bovine erythrocyte superoxide dismutase and two manganese-containing superoxide dismutases have been reduced by the indirect coulometric titration method with methylviologen as the mediator-titrant. On the basis of the titration data the manganese-containing superoxide dismutases contain 1 g-atom of metal per mol of enzyme (dimer). E0' = +0.31 V for the enzyme from Escherichia coli which exhibits a complicated pH dependence above neutral pH. The Bacillus stearothermophilus manganese-containing enzyme has an E0' = +0.26 V and delta Em/pH is 50 mV. Bovine erythrocyte superoxide dismutase exhibits anomalous behavior in the coulometric titration curves, which is indicative of two nonequivalent copper centers in the enzyme. Addition K3Fe(CN)6 or K2IrCl6 to the enzyme solution, prior to coulometric titration, indicates that these anions bind preferentially to one of the copper centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号