首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Enterococcus faecalis is associated with a high proportion of nosocomial infections; however, little is known of the ability of this organism to proliferate in vivo. The ability of RNase B, a model glycoprotein with a single N-glycosylation site occupied by a family of high-mannose-type glycans (Man(5)- to Man(9)-GlcNAc(2)), to support growth of E. faecalis was investigated. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of RNase B demonstrated a reduction in the molecular mass of this glycoprotein during bacterial growth. Further analysis by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry revealed that this mass shift was due to the degradation of all high-mannose-type glycoforms to a single N-linked N-acetylglucosamine residue. High-pH anion-exchange chromatography analysis during exponential growth demonstrated the presence of RNase B-derived glycans in the culture supernatant, indicating the presence of an endoglycosidase activity. The free glycans were eluted with the same retention times as those generated by the action of Streptomyces plicatus endo-beta-N-acetylglucosaminidase H on RNase B. The cleavage specificity was confirmed by MALDI-TOF analysis of the free glycans, which showed glycan species containing only one N-acetylglucosamine residue. No free glycans were detectable after 5 h of bacterial growth, and we have subsequently demonstrated the presence of mannosidase activity in E. faecalis, which releases free mannose from RNase B-derived glycans. We propose that this deglycosylation of glycoproteins containing high-mannose-type glycans and the subsequent degradation of the released glycans by E. faecalis may play a role in the survival and persistence of this nosocomial pathogen in vivo.  相似文献   

2.
The complex asparagine-linked glycans of plant glycoproteins, characterized by the presence of beta 1-->2 xylose and alpha 1-->3 fucose residues, are derived from typical mannose9(N-acetylglucosamine)2 (Man9GlcNAc2) N-linked glycans through the activity of a series of glycosidases and glycosyl transferases in the Golgi apparatus. By screening leaf extracts with an antiserum against complex glycans, we isolated a mutant of Arabidopsis thaliana that is blocked in the conversion of high-manne to complex glycans. In callus tissues derived from the mutant plants, all glycans bind to concanavalin A. These glycans can be released by treatment with endoglycosidase H, and the majority has the same size as Man5GlcNAc1 glycans. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, the mutant cells synthesize Man9GlcNAc2 and Man8GlcNAc2 glycans, suggesting that the biochemical lesion in the mutant is not in the biosynthesis of high-mannose glycans in the endoplasmic reticulum but in their modification in the Golgi. Direct enzyme assays of cell extracts show that the mutant cells lack N-acetyl glucosaminyl transferase I, the first enzyme in the pathway of complex glycan biosynthesis. The mutant plants are able to complete their development normally under several environmental conditions, suggesting that complex glycans are not essential for normal developmental processes. By crossing the complex-glycan-deficient strain of A. thaliana with a transgenic strain that expresses the glycoprotein phytohemagglutinin, we obtained a unique strain that synthesizes phytohemagglutinin with two high-mannose glycans, instead of one high-mannose and one complex glycan.  相似文献   

3.
Lysosomal metabolism of glycoproteins   总被引:2,自引:0,他引:2  
Winchester B 《Glycobiology》2005,15(6):1R-15R
The lysosomal catabolism of glycoproteins is part of the normal turnover of cellular constituents and the cellular homeostasis of glycosylation. Glycoproteins are delivered to lysosomes for catabolism either by endocytosis from outside the cell or by autophagy within the cell. Once inside the lysosome, glycoproteins are broken down by a combination of proteases and glycosidases, with the characteristic properties of soluble lysosomal hydrolases. The proteases consist of a mixture of endopeptidases and exopeptidases, which act in concert to produce a mixture of amino acids and dipeptides, which are transported across the lysosomal membrane into the cytosol by a combination of diffusion and carrier-mediated transport. Although the glycans of all mature glycoproteins are probably degraded in lysosomes, the breakdown of N-linked glycans has been studied most intensively. The catabolic pathways for high-mannose, hybrid, and complex glycans have been established. They are bidirectional with concurrent sequential removal of monosaccharides from the nonreducing end by exoglycosidases and proteolysis and digestion of the carbohydrate-polypeptide linkage at the reducing end. The process is initiated by the removal of any core and peripheral fucose, which is a prerequisite for the action of the peptide N-glycanase aspartylglucosaminidase, which hydrolyzes the glycan-peptide bond. This enzyme also requires free alpha carboxyl and amino groups on the asparagine residue, implying extensive prior proteolysis. The catabolism of O-linked glycans has not been studied so intensively, but many lysosomal glycosidases appear to act on the same linkages whether they are in N- or O-linked glycans, glycosaminoglycans, or glycolipids. The monosaccharides liberated during the breakdown of N- and O-linked glycans are transported across the lysosomal membrane into the cytosol by a combination of diffusion and carrier-mediated transport. Defects in these pathways lead to lysosomal storage diseases. The structures of some of the oligosaccharides that accumulate in these diseases are not digestion intermediates in the lysosomal catabolic pathways but correspond to intermediates in the biosynthetic pathway for N-linked glycans, suggesting another route of delivery of glycans to the lysosome. Incorrectly folded or glycosylated proteins that are rejected by the quality control mechanism are broken down in the ER and cytoplasm and the end product of the cytosolic degradation of N-glycans is delivered to the lysosomes. This route is enhanced in cells actively secreting glycoproteins or producing increased amounts of aberrant glycoproteins. Thus interaction between the lysosome and proteasome is important for the regulation of the biosynthesis and distribution of N-linked glycoproteins. Another example of the extralysosomal function of lysosomal enzymes is the release of lysosomal proteases into the cytosol to initiate the lysosomal pathway of apoptosis.  相似文献   

4.
Vesicular stomatitis virus (VSV) contains a single structural glycoprotein in which the sugar sequences are largely host specified. We have used VSV as a probe to study the changes in cell glycoprotein metabolism induced by virus transformation. Analysis of purified VSV grown in baby hamster kidney (BHK) or polyoma transformed BHK cells showed that the virus glycoproteins have identical apparent molecular weights. The glycopeptides derived from the glycoproteins by extensive pronase digestion have an identical molecular weight distribution.On the basis of labeling experiments with fucose, mannose, and glucosamine, the oligosaccharide moieties of the VSV glycoprotein were different in virus from the two cell lines. The VSV glycopeptides from transformed cells showed an increased resistance to cleavage by an endoglycosidase, indicating structural changes in the core region of the oligosaccharides. They also showed an increased ratio of sialic acid to N-acetylglucosamine.VSV grows in a wide variety of cell types, and the carbohydrate structures of its single glycoprotein are amenable to analysis with specific glycosidases. The virus thus provides an excellent tool with which to study alterations induced by cell transformation in the glycosylation of membrane proteins.  相似文献   

5.
Proteases, glycosidases, and lectins were tested and the results supported a role in host recognition for glycoproteins containing β-glucose and α-mannose on the cuticular surface of host and parasite. Carbohydrates containing α-glucose, galactose, fucose, or N-acetylglucosamine residues apparently are not involved in nematode attachment. Chitin or a related N-acetylglucosamine polymer was found in R. culicivorax preparasites. Treatment of preparasites with neuraminidase, which hydrolyzes sialic acids, increased nematode attachment to Anopheles freeborni larvae.  相似文献   

6.
In the human host, Streptococcus pneumoniae encounters a variety of glycoconjugates, including mucin, host defense molecules, and glycans associated with the epithelial surface. S. pneumoniae is known to encode a number of glycosidases that may modify these glycoconjugates in vivo. Three exoglycosidases, a neuraminidase (NanA), β-galactosidase (BgaA), and N-acetylglucosaminidase (StrH), have been previously demonstrated to sequentially deglycosylate N-linked glycans on host defense molecules, which coat the pneumococcal surface in vivo. This cleavage is proposed to alter the clearance function of these molecules, allowing pneumococci to persist in the airway. However, we propose that the exoglycosidase-dependent liberation of monosaccharides from these glycoconjugates in close proximity to the pneumococcal surface provides S. pneumoniae with a convenient source of fermentable carbohydrate in vivo. In this study, we demonstrate that S. pneumoniae is able to utilize complex N-linked human glycoconjugates as a sole source of carbon to sustain growth and that efficient growth is dependent upon the sequential deglycosylation of the glycoconjugate substrate by pneumococcal exoglycosidases. In addition to demonstrating a role for NanA, BgaA, and StrH, we have identified a function for the second pneumococcal neuraminidase, NanB, in the deglycosylation of host glycoconjugates and have demonstrated that NanB activity can partially compensate for the loss or dysfunction of NanA. To date, all known functions of pneumococcal neuraminidase have been attributed to NanA. Thus, this study describes the first proposed role for NanB by which it may contribute to S. pneumoniae colonization and pathogenesis.  相似文献   

7.
Solubilized sheep brain fucosyltransferase was shown to transfer fucose from GDP-fucose onto glycoprotein and glycopeptide acceptors, such as asialofetuin, asialotransferrin, their glycopeptides and glycopeptides from ovalbumin, but not on to monosaccharides and disaccharides such as galactose, N-acetylglucosamine and lactose. Competition studies between asialofetuin and glycopeptide V from ovalbumin provided evidence that both substrates compete for a common enzyme active site. The position of the fucosyl linkage was then investigated. Endo-beta-N-glucosaminidase D digestion of fucosylated and acetylated glycopeptide V showed that fucose is not linked to asparagine-linked N-acetylglucosamine. Hydrazinolysis and nitrous acid deamination performed on asialofetuin and glycopeptide V proved that fucose is not linked to external galactose or N-acetylglucosamine either. Thus we assume that fucose is linked to the oligomannochitobiosyl core of the glycan, and probably to the second N-acetylglucosamine.  相似文献   

8.
Some mutants of Caenorhabditis elegans show altered patterns of ectopic binding with wheat germ agglutinin (WGA). Some of these mutants also have defects of morphogenesis and movement during development. To clarify the structures of WGA-ligands in C. elegans that may be involved in developmental events, we have analyzed glycan structures capable of binding WGA. We isolated glycoproteins from wild-type C. elegans by WGA-affinity chromatography, and analyzed their glycan structures by a combination of hydrazine degradation and fluorescent labeling. The glycoproteins had oligomannose-type and complex-type N-glycans that included agalacto-biantenna and agalacto-tetraantenna glycans. Although the complex-type glycans carried beta-GlcNAc residues at their non-reducing ends, they did not bind to the WGA-agarose-resin. Thus, it was suggested that these N-glycans were not responsible for WGA-binding of the isolated glycoproteins. Hydrazinolysis of the glycoproteins also released a considerable amount of GalNAc monosaccharide. It was surmised that N-acetylgalactosamine was derived from mucin-type O-glycans with the Tn-antigen structure (GalNAcalpha1-O-Ser/Thr). WGA-blotting assay of neoglycoproteins revealed that a cluster of Tn-antigens was a good ligand for WGA. These results suggested that the WGA-ligand in C. elegans is a cluster of alpha-GalNAc monosaccharides linked to mucin-like glycoprotein(s). The observations reported in this paper emphasize the possible significance of mucin-type O-glycans in the development of a multicellular organism.  相似文献   

9.
Human respiratory syncytial virus (HRSV) is released from the apical membrane of polarized epithelial cells. However, little is known about the processes of assembly and release of HRSV and which viral gene products are involved in the directional maturation of the virus. Based on previous studies showing that the fusion (F) glycoprotein contained an intrinsic apical sorting signal and that N- and O-linked glycans can act as apical targeting signals, we investigated whether the glycoproteins of HRSV were involved in its directional targeting and release. We generated recombinant viruses with each of the three glycoprotein genes deleted individually or in groups. Each deleted gene was replaced with a reporter gene to maintain wild-type levels of gene expression. The effects of deleting the glycoprotein genes on apical maturation and on targeting of individual proteins in polarized epithelial cells were examined by using biological, biochemical, and microscopic assays. The results of these studies showed that the HRSV glycoproteins are not required for apical maturation or release of the virus. Further, deletion of one or more of the glycoprotein genes did not affect the intracellular targeting of the remaining viral glycoproteins or the nucleocapsid protein to the apical membrane.  相似文献   

10.
We have purified and biochemically analyzed individual cell wall glycoproteins of Pneumocystis carinii. Our results show that corresponding core glycoproteins constitute the cell wall antigens in both trophozoites and cysts, and glycosylation of these glycoproteins does not appear to be significantly altered during development. Cysts and trophozoites in rat-derived organism preparations were separated from each other by counterflow centrifugal elutriation, then treated with Zymolyase to obtain the cell wall fractions. Gel electrophoresis patterns of these fractions from both life-cycle stages were qualitatively similar. Ten major antigenic glycoproteins in these fractions were purified by preparative continuous elution gel electrophoresis. All ten glycoproteins from cysts and trophozoites contained mannose, glucose, galactose. and N-acetylglucosamine, and some contained traces of fucose. The glycoproteins of cysts had more mannose than their trophozoite counterparts. The trophozoite glycoproteins differed from those of the cyst by the presence of xylose. To examine the species-specificity of glycoprotein glycosylation, preparations of human-derived P. carinii (comprised of mixed life-cycle stages) were also examined and found to contain the same sugars as those found in rat-derived organisms. Most of the purified rat-derived glycoproteins bound Concanavalin A, which was abolished by treatment with N-glycanase. This suggested that the majority of the oligosaccharides were N-linked to the proteins, but attempts to identify carbohydrate linkage sites by amino acid sequencing were hampered by apparent modifications of residues. The peptides derived by cyanogen bromide cleavage revealed distinct size patterns for each glycoprotein, suggesting that they were distinct proteins. Most of the glycoproteins reacted with monoclonal antibodies which recognize a highly conserved epitope on rat P. carinii. Four of the individually purified glycoprotein preparations elicited in vitro cellular immune responses, implicating their involvement in the recognition of P. carinii by host T cells. The identification and characterization of P. carinii cell wall proteins will be helpful in analyzing the relationship of the organism to its mammalian host. Supplementary key words. Biochemical analysis, developmental stages, opportunistic pathogen, structure.  相似文献   

11.
Deglycosylation studies on tracheal mucin glycoproteins   总被引:4,自引:0,他引:4  
Following several model experiments, conditions were developed for optimal deglycosylation of tracheal mucin glycoproteins. Exposure of rigorously dried material to trifluoromethanesulfonic acid at 0 degree C for up to 8 h results in cleavage of essentially all fucose, galactose, and N-acetylglucosamine, about 80% of the N-acetylneuraminic acid (NeuNAc), and a variable amount of N-acetylgalactosamine (GalNAc), the sugar involved in linkage to protein. Residual N-acetylneuraminic acid is sialidase susceptible and apparently in disaccharide units, presumably NeuNAc2----GalNAc. The remaining N-acetylgalactosamine is mostly present as monosaccharides, and a few Gal beta 1----3GalNAc alpha units are also present; both are cleaved by appropriate enzymatic treatment. The saccharide-free proteins obtained from either human or canine mucin glycoproteins have molecular weights of about 100,000 and require chaotropic agents or detergents for effective solubilization.  相似文献   

12.
Two glycoproteins have been purified from a buffer extract of rye-grass (Lolium perenne) pollen. Both migrated as single bands on sodium dodecyl sulphate/polyacrylamide gels. Glycoprotein 1 (0.8 mg/g of pollen) had a apparent mol.wt. of 33 000 and contained 95% protein and 5% carbohydrate. The monosaccharides glucose, galactose, mannose, arabinose and N-acetylglucosamine were present in the proportions 3:3:1:2:1. Glycoprotein 2 (0.4 mg/g of pollen) had an apparent mol. wt. of 68000 and contained 88% protein and 12% carbohydrate. The monosaccharides glucose, galactose, mannose, fucose, xylose, arabinose and N-acetylglucosamine were present in the proportions 4:7:13:5:8:6:6. This glycoprotein bound concanavalin A and Lotus tetragonolobus (asparagus pea) lectin. Radioallergosorbent (RAST) inhibition tests showed that Glycoprotein 1 is an effective allergen, whereas Glycoprotein 2 has less allergenic activity. A method for performing both lectin-binding assays and RAST inhibition tests using microtitre trays is described.  相似文献   

13.
The development of chemicall, physical and enzymatic methods lead to the determination of numerous structures of glycoprotein glycans and allowed to classify them into "structural families". On the basis of this knowledge, it has been possible, 1) to demonstrate that the oligosaccharides and glycoasparagines accumulating in tissues and urines of patients with diseases characterized by a lack in lysosomal glycosidases originate from glycoprotein glycans incompletely catabolized; 2) to propose a scheme for the normal and pathological catabolism of glycoproteins and 3) to elucidate the problem of the origin of lysosomal glycosidases. These latter are internalized into the lysosomes either through a mechanism of secretion-reuptake, or by following an intracellular traffic, or via the cell plasma membrane. In al cases, membrane receptors intervene which specifically recognize phosphorylated oligomannosidic structures carried by the acidic hydrolases.  相似文献   

14.
Many studies have shown that the human blood fluke Schistosoma mansoni contains glycoproteins whose oligosaccharide side chains are antigenic in infected hosts. We report here that adult male schistosomes synthesize glycoproteins containing complex-type N-linked chains that have structural features not commonly found in mammalian glycoproteins. Adult male worms were incubated in media containing either [3H]mannose, [3H]glucosamine, or [3H]galactose, and the metabolically radiolabeled oligosaccharides on newly synthesized glycoproteins were analyzed. Schistosomes synthesize triantennary- and biantennary-like complex-type asparagine-linked chains that contain mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. Interestingly, none of the complex-type chains contain sialic acid, and few of the chains contain galactose. Since N-acetylgalactosamine is not a common constituent of mammalian-derived N-linked chains, we investigated the position and linkage of this residue in the schistosome-derived glycopeptides. Virtually all of the N-acetylgalactosamine was beta-linked and in a terminal position. The unusual features of the S. mansoni glycoprotein oligosaccharides support the possibility that they may be involved in the host immune response to infection.  相似文献   

15.
The major glycoprotein g2 was purified from three strains of Rous sarcoma virus, representing subgroups A, B, and C. Carbohydrate analysis showed that glucosamine, mannose, galactose, fucose and sialic acid constitute 40% of the weight of the subgroup A glycoprotein and 15% of the subgroup B and C glycoproteins. The molar ratios of sugars were very similar and amino acid compositions were similar but not identical for the three glycoproteins. Glycosidase digestions of subgroup A and C glycoproteins suggested the presence of two types of oligosaccharide chains, the complex serum type, with terminal sequences sialic acidα-Galβ-GlcNAcβ- and the high mannose type with terminal α-linked mannosyl residues. After removal of 70% of the carbohydrate by glycosidases, subgroup A glycoprotein contained only glucosamine and mannose, in the molar ratio 2.0:1.3. The sequence of sugar release was consistent with oligosaccharide structures such as those which have been described for other glycoproteins. The plant lectins concanavalin A and wheat germ agglutinin were shown to interact strongly with the g2 glycoprotein from viruses of all three subgroups.  相似文献   

16.
R J Ivatt 《Biochemistry》1986,25(23):7522-7528
Embryonal carcinoma and early embryonic cells assemble a family of unusually large and complex carbohydrates. These glycans are highly branched, repeating copolymers of the sugars galactose and N-acetylglucosamine, referred to as polylactosamines, and are frequently decorated with fucose, sulfate, and sialic acid. We have previously shown that in teratocarcinoma cells these glycans are part of a large spectrum of glycans assembled on mannose cores derived from a common precursor glycan. Metabolic studies revealed a large excess of high-mannose glycans at a time when complex-type glycans cease to accumulate. The present studies demonstrate that these high-Man glycans are not degraded internally or secreted directly but are on glycoproteins destined for the cell surface. These unprocessed glycoproteins replace material lost during the extensive membrane turnover that occurs in these cells. Their export to the cell surface is delayed in a pre-Golgi compartment.  相似文献   

17.
Taylor AM  Holst O  Thomas-Oates J 《Proteomics》2006,6(10):2936-2946
Glycosylation is a widespread PTM of proteins; the carbohydrate moieties provide various functional, immunological and structural aspects of both eukaryotic and prokaryotic glycoproteins. Traditional strategies used to analyse glycoprotein O-glycans involve glycoprotein isolation, followed by glycan release using solution-phase base-catalysed beta-elimination. However, in a proteomics context, mixtures of proteins and glycoproteins are routinely separated using SDS-PAGE. We have therefore developed a method to enable the profiling of O-linked glycans directly from glycoproteins on gels. This is achieved using in-gel reductive beta-elimination followed by mass spectrometric analysis of the released glycans. Here we describe our demonstration of the feasibility of this approach, our development and optimisation of the procedure using bovine submaxillary gland glycoproteins as a standard, and then show its usefulness by applying the developed procedure to the analysis of the O-glycans from a glycoprotein band from a Coomassie-stained SDS-PAGE separation of a mixture of Mycobacterium avium capsular proteins and glycoproteins. The procedure has been shown to be applicable to both CBB- and silver-stained gels. The method offers a quick and easy way to identify the O-glycans from gel-separated glycoproteins within gel-based proteomics workflows.  相似文献   

18.
Keyhole limpet hemocyanin (KLH) of the mollusc Megathura crenulata is known to serologically cross-react with Schistosoma mansoni glycoconjugates in a carbohydrate-dependent manner. To elucidate the structural basis for this cross-reactivity, KLH glycans were released from tryptic glycopeptides and fluorescently labeled. Cross-reacting glycans were identified using a polyclonal antiserum reacting with soluble S. mansoni egg antigens, isolated by a three-dimensional fractionation scheme and analyzed by different mass spectrometric techniques as well as linkage analysis and exoglycosidase treatment. The results revealed that cross-reacting species comprise approximately 4.5% of released glycans. They all represent novel types of N-glycans with a Fuc(alpha1-3)GalNAc(beta1-4)[Fuc(alpha1-3)]GlcNAc motif, which is known to occur also in schistosomal glycoconjugates. The tetrasaccharide unit is attached to the 3-linked antenna of a trimannosyl core, which can be further decorated by galactosyl residues, a xylose residue in 2-position of the central mannose and/or a fucose at the innermost N-acetylglucosamine. This study provides for the first time detailed structural data on the KLH carbohydrate entities responsible for cross-reactivity with glycoconjugates from S. mansoni.  相似文献   

19.
Abstract: With [3H]fucose as a marker, C6 glioma cells in culture released an 85,000 molecular weight molecule into the medium as the major extracellular glycoprotein. The quantity and extracellularkytoplasmic ratio of this glycoprotein suggest that its cellular processing is different from that of five other released glycoproteins of molecular weights 55,000, 115,000, 130,000, 150,000, and 170,000. Nearly 40% of newly synthesized glycoproteins in the cells was released into the culture medium. Major glycoproteins retained by the cells migrated electrophoretically to molecular weight positions of 82,000, 110,000, 120,000, 140,000, and 160,000, and approximately one-third of these retained glycoproteins were labile to trypsinization. Both synthesis and release of these macromolecules were inhibited more than 95% with cycloheximide treatment, demonstrating that nearly all fucosylation was linked to protein synthesis. Since 40% of all glycoproteins was released under conditions of more than 99% cellular viability, it is likely that these extracellular glycoproteins are physiological products of membrane turnover and secretion, but not of cell lysis. The results provide a basis for the further study of glial differentiation and of shed glioma antigens.  相似文献   

20.
Ohl C  Albach C  Altevogt P  Schmitz B 《Biochimie》2003,85(6):565-573
N-glycans of the mouse glycoprotein HSA and its human analogue CD24 from lymphoblastoma, neuroblastoma and astrocytoma cell lines as well as from mouse brain homogenate were analysed and compared to each other and to the N-glycosylation pattern of total glycoproteins from mouse and human brain. The N-glycans were released from PVDF-blotted HSA or CD24 and separated on Carbograph SPE into neutral and acid glycans. The naturally neutral glycan fraction and the fraction of glycans rendered neutral after neuraminidase treatment were analysed without further purification by MALDI-MS. In each fraction, about 25 molecular ions with an intensity >10% of the base peak were identified which corresponded to glycans with distinct isobaric monosaccharide compositions. Comparison of the neutral and desialylated glycans revealed some similarities between the samples analysed, but also clear differences. HSA and CD24 from all cell lines express almost no neutral N-glycans with two or more fucose in contrast to brain HSA and glycoproteins from mouse and human brain. The lack of extensive fucosylation was also observed for desialylated glycans of HSA and CD24 from all cell lines analysed except for CD24 from a human neuroblastoma cell line which exhibits like total human and mouse brain glycoproteins a large variety of highly fucosylated, higher branched N-glycans. HSA from mouse brain carries in addition desialylated non-fucosylated glycans of high abundance which were detected, if at all, only at low intensity in all other samples analysed suggesting that they may be implicated in specific functions of mouse brain HSA. Therefore, a rapid assessment of similarities or differences between glycosylation patterns of a glycoprotein isolated from different sources is possible using methods as described here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号