首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Messenger RNA degradation is a mechanism by which eukaryotic cells regulate gene expression and influence cell growth and differentiation. Many protooncogene, cytokine, and growth factor RNAs contain AU-rich element (AREs) in the 3'untranslated regions which enable them to be targeted for rapid degradation. To investigate the mechanism of ARE-mediated RNA stability, we demonstrate the expression and regulation of TNFalpha and IL-1beta mRNAs in LPS-stimulated macrophages. TNFalpha mRNA was rapidly induced by LPS and showed short half-life at 2-h induction, whereas IL-1beta mRNA was induced slowly and had longer half-life. Electrophoretic mobility shift assays showed that the LPS-induced destabilization factor tristetraprolin (TTP) could bind to TNFalpha ARE with higher affinity than to IL-1beta ARE. HuR was identified to interact with TNFalpha ARE to exert RNA stabilization activity. The expression and phosphorylation of TTP could be activated by p38 MAPK pathway during LPS stimulation. Moreover, ectopic expression with TTP and kinases in p38 pathway followed by biochemical assays showed that the activation of p38 pathway resulted in the phosphorylation of TTP and a decrease in its RNA-binding activity. The ARE-containing reporter assay presented that the p38 signal could reverse the inhibitory activity of TTP on IL-1beta ARE but not on TNFalpha ARE. The present results indicate that the heterogeneity of AREs from TNFalpha and IL-1beta could reflect distinct ARE-binding proteins to modulate their RNA expression.  相似文献   

3.
The CTX family is a growing group of type I transmembrane proteins within the immunoglobulin superfamily (IgSF). They localize to junctional complexes between endothelial and epithelial cells and seem to participate in cell-cell adhesion and transmigration of leukocytes. Here, we report the identification of a new member of the CTX family. This protein, which was designated CLMP (coxsackie- and adenovirus receptor-like membrane protein), is composed of 373 amino acids including an extracellular part containing a V- and a C2-type domain, a transmembrane region and a cytoplasmic tail. CLMP mRNA was detected in a variety of both human and mouse tissues and cell lines. The protein migrated with an Mr of around 48 on SDS-PAGE and was predominantly expressed in epithelial cells within different tissues. In cultured epithelial cells, CLMP was detected in areas of cell-cell contacts. When exogenously expressed in polarized MDCK cells, CLMP was restricted to the subapical area of the lateral cell surface, where it co-localized with the tight junction markers ZO-1 and occludin. Also endogenous CLMP showed association with tight junctions, as analyzed in polarized human CACO-2 cells. This suggested a role for CLMP in cell-cell adhesion and indeed, overexpressed CLMP induced aggregation of non-polarized CHO cells. Furthermore, CLMP-expressing MDCK cells showed significantly increased transepithelial resistance, indicating a role for CLMP in junctional barrier function. Thus, we conclude that CLMP is a novel cell-cell adhesion molecule and a new component of epithelial tight junctions. We also suggest, based on phylogenetic studies, that CLMP, CAR, ESAM, and BT-IgSF form a new group of proteins within the CTX family.  相似文献   

4.
Chang L  Kamata H  Solinas G  Luo JL  Maeda S  Venuprasad K  Liu YC  Karin M 《Cell》2006,124(3):601-613
The proinflammatory cytokine tumor necrosis factor (TNF) alpha signals both cell survival and death. The biological outcome of TNFalpha treatment is determined by the balance between NF-kappaB and Jun kinase (JNK) signaling; NF-kappaB promotes survival, whereas JNK enhances cell death. Critically, identity of a JNK substrate that promotes TNFalpha-induced apoptosis has been outstanding. Here we show that TNFalpha-mediated JNK activation accelerates turnover of the NF-kappaB-induced antiapoptotic protein c-FLIP, an inhibitor of caspase-8. This is not due to direct c-FLIP phosphorylation but depends on JNK-mediated phosphorylation and activation of the E3 ubiquitin ligase Itch, which specifically ubiquitinates c-FLIP and induces its proteasomal degradation. JNK1 or Itch deficiency or treatment with a JNK inhibitor renders mice resistant in three distinct models of TNFalpha-induced acute liver failure, and cells from these mice do not display inducible c-FLIP(L) ubiquitination and degradation. Thus, JNK antagonizes NF-kappaB during TNFalpha signaling by promoting the proteasomal elimination of c-FLIP(L).  相似文献   

5.
Tristetraprolin (TTP) is an mRNA-binding protein, but studies of this interaction have been difficult due to problems with the purification of recombinant TTP. In the present study, we expressed human and mouse TTP as glutathione S-transferase and maltose-binding protein (MBP) fusion proteins in Escherichia coli, and purified them by affinity resins and Mono Q chromatography. TTP cleaved from the fusion protein was identified by immunoblotting, MALDI-MS, and protein sequencing, and was further purified to homogeneity by continuous-elution SDS-gel electrophoresis. Purified recombinant TTP bound to the AU-rich element of tumor necrosis factor-alpha (TNFalpha) mRNA and this binding was dependent on Zn(2+). Results from sizing columns suggested that the active species might be in the form of an oligomer of MBP-TTP. Recombinant TTP was phosphorylated by three members of the mitogen-activated protein (MAP) kinase family, p42, p38, and JNK, with half-maximal phosphorylation occurring at approximately 0.5, 0.25, and 0.25 microM protein, respectively. Phosphorylation by these kinases did not appear to affect the ability of TTP to bind to TNFalpha mRNA under the assay conditions. This study describes a procedure for purifying nonfusion protein TTP to homogeneity, demonstrates that TTP's RNA-binding activity is zinc dependent, and that TTP can be phosphorylated by JNK as well as by the other members of the greater MAP kinase family.  相似文献   

6.
Wang X  Li N  Liu B  Sun H  Chen T  Li H  Qiu J  Zhang L  Wan T  Cao X 《The Journal of biological chemistry》2004,279(44):45855-45864
The phosphatidylethanolamine (PE)-binding proteins (PEBPs) are an evolutionarily conserved family of proteins with pivotal biological functions. Here we describe the cloning and functional characterization of a novel family member, human phosphatidylethanolamine-binding protein 4 (hPEBP4). hPEBP4 is expressed in most human tissues and highly expressed in tumor cells. Its expression in tumor cells is further enhanced upon tumor necrosis factor (TNF) alpha treatment, whereas hPEBP4 normally co-localizes with lysosomes, TNFalpha stimulation triggers its transfer to the cell membrane, where it binds to Raf-1 and MEK1. L929 cells overexpressing hPEBP4 are resistant to both TNFalpha-induced ERK1/2, MEK1, and JNK activation and TNFalpha-mediated apoptosis. Co-precipitation and in vitro protein binding assay demonstrated that hPEBP4 interacts with Raf-1 and MEK1. A truncated form of hPEBP4, lacking the PE-binding domain, maintains lysosomal co-localization but has no effect on cellular responses to TNFalpha. Given that MCF-7 breast cancer cells expressed hPEBP4 at a high level, small interfering RNA was used to silence the expression of hPEBP4. We demonstrated that down-regulation of hPEBP4 expression sensitizes MCF-7 breast cancer cells to TNFalpha-induced apoptosis. hPEBP4 appears to promote cellular resistance to TNF-induced apoptosis by inhibiting activation of the Raf-1/MEK/ERK pathway, JNK, and PE externalization, and the conserved region of PE-binding domain appears to play a vital role in this biological activity of hPEBP4.  相似文献   

7.
8.
9.
10.
Class B scavenger receptor type I (SR-BI), a multiligand membrane protein, exists in various organs and cell types. In the testis, SR-BI is expressed in two somatic cell types: Leydig cells and Sertoli cells. Unlike interstitially localized Leydig cells, Sertoli cells present within the seminiferous tubules keep contact with spermatogenic cells and form the tight junction to divide the seminiferous epithelium into the basal and adluminal compartments. In this study, the expression and function of SR-BI in rat Sertoli cells were examined with respect to dependency on the spermatogenic cycle, the plasma membrane polarity, and the pituitary hormone follicle-stimulating hormone (FSH). When the expression of SR-BI was histochemically examined with testis sections, both protein and mRNA were already present in Sertoli cells during the first-round spermatogenesis and continued to be detectable thereafter. The level of SR-BI mRNA expression in Sertoli cells was lower at spermatogenic stages I-VI than at other stages. SR-BI was present and functional (in mediating cellular incorporation of lipids of high density lipoprotein) at both the apical and basolateral surfaces of polarized Sertoli cells. Finally, SR-BI expression at both the protein and mRNA levels was stimulated by FSH in cultured Sertoli cells. These results indicate that SR-BI functions on both the apical and basolateral plasma membranes of Sertoli cells, and that SR-BI expression in Sertoli cells changes during the spermatogenic cycle and is stimulated, at least in cultures, by FSH.  相似文献   

11.
Somatostatin is a multifunctional hormone that modulates cell proliferation, differentiation and apoptosis. Mechanisms for somatostatin-induced apoptosis are at present mostly unsolved. Therefore, we investigated whether somatostatin receptor subtype 2 (sst2) induces apoptosis in the nontransformed murine fibroblastic NIH3T3 cells. Somatostatin receptor subtype 2 expression induced an executioner caspase-mediated apoptosis through a tyrosine phosphatase SHP-1 (Src homology domain phosphatase-1)-dependent stimulation of nuclear factor kappa B (NF-kappaB) activity and subsequent inhibition of the mitogen-activated protein kinase JNK. Tumor necrosis factor alpha (TNFalpha) stimulated both NF-kappaB and c-Jun NH2-terminal kinase (JNK) activities, which had opposite action on cell survival. Importantly, sst2 sensitized NIH3T3 cells to TNFalpha-induced apoptosis by (1) upregulating TNFalpha receptor protein expression, and sensitizing to TNFalpha-induced caspase-8 activation; (2) enhancing TNFalpha-mediated activation of NF-kappaB, resulting in JNK inhibition and subsequent executioner caspase activation and cell death. We have here unraveled a novel signaling mechanism for a G protein-coupled receptor, which directly triggers apoptosis and crosstalks with a death receptor to enhance death ligand-induced apoptosis.  相似文献   

12.
13.
目的:研究体外大鼠睾丸支持细胞紧密连接蛋白(SCJP)在类雌激素-双酚A(BPA)干扰下的损伤机制。方法:对Wistar大鼠睾丸支持细胞(Sertoli细胞)离体原代培养4-5d,通过双室培养模型建立体外紧密连接(TJ)渗透性屏障,并测量其跨上皮电阻值(TER)反应紧密连接结构的形成及BPA对紧密连接的损害程度。设溶剂(DMSO)做阴性对照,以终浓度为25μM、100μM的BPA作用于支持细胞24h,MTT法测不同浓度BPA作用的Sertoli细胞增殖活性。Western bloting观察occludin、ZO-1、Cx43表达的变化。结果:成功分离并培养Wistar大鼠睾丸支持细胞,并建立良好的体外TJ屏障模型。双室培养支持细胞上皮TER值在培养的d4达到顶峰,然后在d4-9维持相对较稳定的状态,d4以200μM,100μM,25μM BPA染毒,分别于染毒后24,48,72,96和120h测TER:与DMSO溶剂对照组相比,200μM,100μM的BPA组TER值明显下降(P<0.05),而25μM的BPA组在染毒后TER值无明显变化(P>0.05)。MTT结果显示:经不同浓度BPA作用24h后,Sertoli细胞的吸光度(OD值)随着染毒剂量的增加而逐渐降低。102、103μM浓度组与溶剂对照组有显著性差异(P<0.05),而10-2、10-1、100、101μM组和溶剂对照组无显著性差异(P>0.05)。Western blot结果显示:occludin、ZO-1、Cx43在各剂量组均有表达,与溶剂对照组相比,occludin、ZO-1表达均分别随作用剂量的增加而降低:25μM组、100μM组与溶剂对照组相比,差异均存在显著性(P<0.05);100μM组与25μM组相比,差异亦存在显著性(P<0.05)。Cx43的表达却随染毒剂量的增加而增加,与溶剂对照组相比,25μM组表达无明显增加(P>0.05),而100μM组则明显增加(P<0.05);与25μM组相比,100μM组表达明显增加(P<0.05)。结论:双酚A可通过损伤支持细胞连接蛋白正常表达,破坏了TJ屏障渗透性,从而影响正常的精子形成过程。  相似文献   

14.
15.
Loss-of-function mutations in CLMP have been found in patients with Congenital Short Bowel Syndrome (CSBS), suggesting that its encoded protein plays a major role in intestinal development. CLMP is a membrane protein that co-localizes with tight junction proteins, but its function is largely unknown. We expressed wild-type (WT)-CLMP and a mutant-CLMP (associated with CSBS) in human intestinal epithelial T84 cells that, as we show here, do not produce endogenous CLMP. We investigated the effects of WT-CLMP and mutant-CLMP proteins on key cellular processes that are important for intestinal epithelial development, including migration, proliferation, viability and transepithelial resistance. Our data showed that expression of WT-CLMP or mutant-CLMP does not affect any of these processes. Moreover, our aggregation assays in CHO cells show that CLMP does not act as a strong adhesion molecule. Thus, our data suggest that, in the in vitro model systems we used, the key processes involved in intestinal epithelial development appear to be unaffected by WT-CLMP or mutant-CLMP. Further research is needed to determine the role of CLMP in the development of the intestine.  相似文献   

16.
In mouse embryoid bodies, mutation of the tight junction protein cingulin results in changes in gene expression. Here, we studied the function of cingulin using a gene silencing approach in Madin-Darby canine kidney (MDCK) cells. Cingulin-depleted cells show higher protein and mRNA levels of claudin-2 and ZO-3, increased RhoA activity, activation of G1/S phase transition, and increased cell density. The effects of cingulin depletion on claudin-2 expression, cell proliferation, and density are reversed by coexpression of either a dominant-negative form of RhoA (RhoAN19) or the Rho-inhibiting enzyme C3 transferase. However, the increase in ZO-3 protein and mRNA levels is not reversed by inhibition of either RhoA, p38, extracellular signal-regulated kinase (ERK), or c-Jun NH2-terminal kinase (JNK), suggesting that cingulin modulates ZO-3 expression by a different mechanism. JNK is implicated in the regulation of claudin-2 levels independently of cingulin depletion and RhoA activity, indicating distinct roles of RhoA- and JNK-dependent pathways in the control of claudin-2 expression. Finally, cingulin depletion does not significantly alter the barrier function of monolayers and the overall molecular organization of tight junctions. These results provide novel insights about the mechanisms of cingulin function and the signaling pathways controlling claudin-2 expression in MDCK cells.  相似文献   

17.
18.
Tricellulin (TRIC) is a tight junction protein at tricellular contacts where three epithelial cells meet, and it is required for the maintenance of the epithelial barrier. To investigate whether TRIC is regulated via a c‐Jun N‐terminal kinase (JNK) pathway, human pancreatic HPAC cells, highly expressed at tricellular contacts, were exposed to various stimuli such as the JNK activators anisomycin and 12‐O‐tetradecanoylphorbol 13‐acetate (TPA), and the proinflammatory cytokines IL‐1β, TNFα, and IL‐1α. TRIC expression and the barrier function were moderated by treatment with the JNK activator anisomycin, and suppressed not only by inhibitors of JNK and PKC but also by siRNAs of TRIC. TRIC expression was induced by treatment with the PKC activator TPA and proinflammatory cytokines IL‐1β, TNFα, and IL‐1α, whereas the changes were inhibited by a JNK inhibitor. Furthermore, in normal human pancreatic duct epithelial cells using hTERT‐transfected primary cultured cells, the responses of TRIC expression to the various stimuli were similar to those in HPAC cells. TRIC expression in tricellular tight junctions is strongly regulated together with the barrier function via the JNK transduction pathway. These findings suggest that JNK may be involved in the regulation of tricellular tight junctions including TRIC expression and the barrier function during normal remodeling of epithelial cells, and prevent disruption of the epithelial barrier in inflammation and other disorders in pancreatic duct epithelial cells. J. Cell. Physiol. 225: 720–733, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
In this study, the intracellular signaling mechanisms through which TNFalpha increases LDH(A4) activity/expression in primary cultures of porcine testicular Sertoli cells were investigated. Studies were focused on sphingomyelin hydrolysis pathway. Treatment of [(14)C]serine-labeled cells with TNFalpha (15 ng/ml, 0.8 nM) resulted in a transient decrease (approximately 20%) in cellular [(14)C]sphingomyelin and in an increase (approximately 27%) in [(14)C]sphingosine that remained elevated for at least 75 min. In the same experiments, no significant changes were detected in ceramide levels. Exogenous sphingosine stimulated LDH(A4) activity and LDHA expression in a dose-dependent manner (ED(50) = 8 microM of sphingosine). Such an increase in LDHA messenger RNA levels and LDH(A4) activity was detected at 24 h and was maximal after 48 h of treatment. Kinetically, the increase in LDH(A4) activity was similar whether Sertoli cells were treated with sphingosine (12 microM) or with TNFalpha (20 ng/ml). Although sphingosine mimicked the action of TNFalpha on Sertoli cells LDH(A4) activity and expression, the maximal stimulatory effect represented about 30% of TNFalpha maximal activity. Sphingomyelinase, C2 ceramide, sphingosine 1-phosphate, N, N-dimethylsphingosine, and phosphorylcholine had no significant effect on LDHA expression/LDH(A4) activity. Exogenous C2 ceramide increased LDH(A4) activity only in cytokine-treated cells, suggesting its involvement as sphingosine precursor in TNFalpha-stimulated LDH(A4) activity via the sphingomyelin hydrolysis pathway. The LDH(A4) activity stimulated by TNFalpha was decreased by 36.2% by an inhibitor of sphingosine formation, NH4Cl (4 mM), supporting a role of sphingosine in the TNFalpha effect. Moreover, bisindolylmaleimide (100 nM), a protein kinase C (PKC) inhibitor decreased significantly by 28.7% the TNFalpha effect on LDH(A4) activity but had no effect on the stimulating action of sphingosine, suggesting that if PKC is involved in TNFalpha action, the sphingosine effect on LDH(A4) is unrelated to the PKC activity or inhibition. Together, the present data suggest that in primary Sertoli cell cultures, TNFalpha stimulating action on LDHA expression is partly exerted via sphingomyelin hydrolysis pathway, sphingosine being the active metabolite.  相似文献   

20.
IL-23 plays an essential role in maintenance of IL-17-producing Th17 cells that are involved in the pathogenesis of several autoimmune diseases. Regulation of Th17 cells is tightly controlled by multiple factors such as IL-27 and IFN-γ. However, the detailed mechanisms responsible for IFN-γ-mediated Th17 cell inhibition are still largely unknown. In this study, we demonstrate that IFN-γ differentially regulates IL-12 and IL-23 production in both dendritic cells and macrophages. IFN-γ suppresses IL-23 expression by selectively targeting p19 mRNA stability through its 3'-untranslated region (3'UTR). Furthermore, IFN-γ enhances LPS-induced tristetraprolin (TTP) mRNA expression and protein production. Overexpression of TTP suppresses IL-23 p19 mRNA expression and p19 3'UTR-dependent luciferase activity. Additionally, deletion of TTP completely abolishes IFN-γ-mediated p19 mRNA degradation. We further demonstrate that IFN-γ suppresses LPS-induced p38 phosphorylation, and blockade of p38 MAPK signaling pathway with SB203580 inhibits IFN-γ- and LPS-induced p19 mRNA expression, whereas overexpression of p38 increases p19 mRNA expression via reducing TTP binding to the p19 3'UTR. Finally, inhibition of p38 phosphorylation by IFN-γ leads to TTP dephosphorylation that could result in stronger binding of the TTP to the adenosine/uridine-rich elements in the p19 3'UTR and p19 mRNA degradation. In summary, our results reveal a direct link among TTP, IFN-γ, and IL-23, indicating that IFN-γ-mediated Th17 cell suppression might act through TTP by increasing p19 mRNA degradation and therefore IL-23 inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号