首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Utilizing a genetic screen in the yeast Saccharomyces cerevisiae, we identified a novel autoactivation region in mammalian MEK1 that is involved in binding the specific MEK inhibitor, PD 184352. The genetic screen is possible due to the homology between components of the yeast pheromone response pathway and the eukaryotic Raf-MEK-ERK signaling cascade. Using the FUS1::HIS3 reporter as a functional readout for activation of a reconstituted Raf-MEK-ERK signaling cascade, randomly mutagenized MEK variants that were insensitive to PD 184352 were obtained. Seven single-base-change mutations were identified, five of which mapped to kinase subdomains III and IV of MEK. Of the seven variants, only one, a leucine-to-proline substitution at amino acid 115 (Leu115Pro), was completely insensitive to PD 184352 in vitro (50% inhibitory concentration >10 micro M). However, all seven mutants displayed strikingly high basal activity compared to wild-type MEK. Overexpression of the MEK variants in HEK293T cells resulted in an increase in mitogen-activated protein (MAP) kinase phosphorylation, a finding consistent with the elevated basal activity of these constructs. Further, treatment with PD 184352 failed to inhibit Leu115Pro-stimulated MAP kinase activation in HEK293T cells, whereas all other variants had some reduction in phospho-MAP kinase levels. By using cyclic AMP-dependent protein kinase (1CDK) as a template, an MEK homology model was generated, with five of the seven identified residues clustered together, forming a potential hydrophobic binding pocket for PD 184352. Additionally, the model allowed identification of other potential residues that would interact with the inhibitor. Directed mutation of these residues supported this region's involvement with inhibitor binding.  相似文献   

3.
We investigated the role of the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip1) in cell cycle regulation during hypoxia and reoxygenation. While moderate hypoxia (1 or 0.1% oxygen) does not significantly impair bromodeoxyuridine incorporation, at very low oxygen tensions (0.01% oxygen) DNA replication is rapidly shut down in immortalized mouse embryo fibroblasts. This S-phase arrest is intact in fibroblasts lacking the cyclin kinase inhibitors p21(Cip1) and p27(Kip1), indicating that these molecules are not essential elements of the arrest pathway. Hypoxia-induced arrest is accompanied by dephosphorylation of pRb and inhibition of cyclin-dependent kinase 2, which results in part from inhibitory phosphorylation. Interestingly, cells lacking the retinoblastoma tumor suppressor protein also display arrest under hypoxia, suggesting that pRb is not an essential mediator of this response. Upon reoxygenation, DNA synthesis resumes by 3.5 h and reaches aerobic levels by 6 h. Cells lacking p21, however, resume DNA synthesis more rapidly upon reoxygenation than wild-type cells, suggesting that this inhibitor may play a role in preventing premature reentry into the cell cycle upon cessation of the hypoxic stress. While p27 null cells did not exhibit rapid reentry into the cell cycle, cells lacking both p21 and p27 entered S phase even more aggressively than those lacking p21 alone, revealing a possible secondary role for p27 in this response. Cdk2 activity is also restored more rapidly in the double-knockout cells when returned to normoxia. These studies reveal that restoration of DNA synthesis after hypoxic stress, but not the S phase arrest itself, is regulated by p21 and p27.  相似文献   

4.
Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway   总被引:24,自引:0,他引:24  
Mody N  Leitch J  Armstrong C  Dixon J  Cohen P 《FEBS letters》2001,502(1-2):21-24
Antibodies that recognise the active phosphorylated forms of mitogen-activated protein kinase (MAPK) kinase 5 (MKK5) and extracellular signal-regulated kinase 5 (ERK5) in untransfected cells have been exploited to show that the epidermal growth factor (EGF)-induced activation of MKK5 and ERK5 occurs subsequent to the activation of ERK1 and ERK2 in HeLa cells. The drugs U0126 and PD184352, which prevent the activation of MKK1 (and hence the activation of ERK1/ERK2), also prevent the activation of MKK5, although higher concentrations are required. Our studies define physiological targets of the MKK5/ERK5 pathway as proteins whose phosphorylation is largely prevented by 10 microM PD184352, but unaffected by 2 microM PD184352. Surprisingly, 2 microM PD184352 prolongs the activation of MKK5 and ERK5 induced by EGF or H(2)O(2), indicating negative control of the MKK5/ERK5 pathway by the classical MAPK cascade. Our results also indicate that ERK5 is not a significant activator of MAPK-activated protein kinase-1/RSK in HeLa cells.  相似文献   

5.
6.
Dokladda K  Green KA  Pan DA  Hardie DG 《FEBS letters》2005,579(1):236-240
The MAP kinase pathway inhibitor U0126 caused phosphorylation and activation of AMP-activated protein kinase (AMPK) and increased phosphorylation of its downstream target acetyl-CoA carboxylase, in HEK293 cells. This effect only occurred in cells expressing the upstream kinase, LKB1. Of two other widely used MAP kinase pathway inhibitors not closely related in structure to U0126, PD98059 also activated AMPK but PD184352 did not. U0126 and PD98059, but not PD184352, also increased the cellular ADP:ATP and AMP:ATP ratios, accounting for their ability to activate AMPK. These results suggest the need for caution in interpreting experiments conducted using U0126 and PD98059.  相似文献   

7.
Bloom's syndrome (BS) is a human genetic disorder associated with cancer predisposition. The BS gene product, BLM, is a member of the RecQ helicase family, which is required for the maintenance of genome stability in all organisms. In budding and fission yeasts, loss of RecQ helicase function confers sensitivity to inhibitors of DNA replication, such as hydroxyurea (HU), by failure to execute normal cell cycle progression following recovery from such an S-phase arrest. We have examined the role of the human BLM protein in recovery from S-phase arrest mediated by HU and have probed whether the stress-activated ATR kinase, which functions in checkpoint signaling during S-phase arrest, plays a role in the regulation of BLM function. We show that, consistent with a role for BLM in protection of human cells against the toxicity associated with arrest of DNA replication, BS cells are hypersensitive to HU. BLM physically associates with ATR (ataxia telangiectasia and rad3(+) related) protein and is phosphorylated on two residues in the N-terminal domain, Thr-99 and Thr-122, by this kinase. Moreover, BS cells ectopically expressing a BLM protein containing phosphorylation-resistant T99A/T122A substitutions fail to adequately recover from an HU-induced replication blockade, and the cells subsequently arrest at a caffeine-sensitive G(2)/M checkpoint. These abnormalities are not associated with a failure of the BLM-T99A/T122A protein to localize to replication foci or to colocalize either with ATR itself or with other proteins that are required for response to DNA damage, such as phosphorylated histone H2AX and RAD51. Our data indicate that RecQ helicases play a conserved role in recovery from perturbations in DNA replication and are consistent with a model in which RecQ helicases act to restore productive DNA replication following S-phase arrest and hence prevent subsequent genomic instability.  相似文献   

8.
We have purified a cell regulatory sialoglycopeptide, CeReS-18, from intact bovine cerebral cortex cells. This is an 18-kDa molecule that reversibly inhibits cellular DNA synthesis and the proliferation of a wide array of target cells. In the present study, the effect of CeReS-18 on mouse 3T6 host cell proliferation and polyomavirus replication was investigated. The results showed that CeReS-18 was able to inhibit 3T6 cell cycling in a concentration-dependent, calcium-sensitive, and reversible manner. Despite the inhibition of cell proliferation, CeReS-18 did not influence polyomavirus infection of 3T6 cells. Indirect immunofluorescent assays revealed that CeReS-18-treated, and cell cycle-arrested, 3T6 cells remained permissive to polyomavirus replication. Electron microscopy and immunogold labeling showed that new viral particles were assembled inside the nuclei of infected cells in the presence of CeReS-18 and during cell cycle arrest. The cellular requirements for the replication of polyomavirus DNA and the synthesis of viral proteins, as well as for the assembly of viral particles, therefore, remained available in CeReS-18-inhibited 3T6 cells. In addition, although polyomavirus infection can be mitogenic, infection of CeReS-18-treated 3T6 cells did not reverse the cell cycle arrest mediated by this cell cycle inhibitor.  相似文献   

9.
Simian virus 40 (SV40)-infected CV1 cells exposed to hypoxia show an inhibition of viral replication. Reoxygenation after several hours of hypoxia results in new initiations followed by a nearly synchronous round of SV40 replication. In this communication, we examined the effect of glucose on inhibition of viral DNA replication under hypoxia. We found that glucose stimulated SV40 DNA replication under hypoxia in two different ways. First, the rate of DNA synthesis, i.e. the fork propagation rate, increased. This effect seemed to be mediated by inhibition of mitochondrial respiration by glucose (Crabtree effect). Inhibition of mitochondrial respiration probably resulted in a higher intracellular oxygen concentration and an activation of oxygen-dependent ribonucleotide reductase, which provides the precursors for DNA synthesis. This glucose effect was consequently strongly dependent on the strength of hypoxia and the extent of intracellular respiration; hypoxic gassing with 10 ppm instead of 200-400 ppm O(2) or treatment of hypoxic cells with a mitochondrial uncoupler (carbonyl cyanide m-chlorophenylhydrazone) reduced the glucose effect on replication, whereas antimycin A, an inhibitor of respiration, increased it. The second effect of glucose concerned initiation, i.e. stimulation of unwinding of the viral origin. This effect was not influenced by the strength of hypoxia or the extent of cellular respiration and seemed, therefore, not to be mediated through a Crabtree effect. No evidence for a direct correlation between the cellular ATP concentration and the extent of SV40 replication under hypoxia was found. The effect of glucose on replication under hypoxia was not restricted to SV40-infected CV1 cells but was also detectable in HeLa cells. This suggests it to be a mechanism of more general validity.  相似文献   

10.
Gene replication in the presence of aphidicolin   总被引:1,自引:0,他引:1  
DNA replication in the nucleus of eukaryotic cells is restricted to the S phase of the cell cycle, and different genes are duplicated at specific times, according to a well-defined temporal order. We have investigated whether activation of initiation sites, in proximity to genes that are replicated in different portions of the S phase, could be detected when synchronized 10T1/2 cells were maintained in aphidicolin (APC), an inhibitor of DNA polymerases alpha and delta. Cells released from confluence arrest into medium containing 2 micrograms/mL APC progressed into the S phase, and nascent DNA accumulated during incubations of 24 and 32 h. Exposure to APC for 40 or 48 h resulted in growth of the radiolabeled DNA into larger molecules. Replicating DNA was isolated in CsCl gradients and probed with 32P-labeled gene probes for early-replicating genes (e.g., Ha-ras, mos, and myc) and a late-replicating gene (VH Ig). DNA replicated during the 24-h incubation in APC was enriched in Ha-ras gene sequences. The VH Ig gene did not replicate in cells incubated for as long as 56 h with APC. The myc and the mos genes were detected after 32 and 40 h in APC, respectively. The myc gene is replicated in 10T1/2 cells after Ha-ras but before mos. Therefore, the order of activation of these genes was conserved in the presence of APC. The delay in replication of myc and mos correlated well with the slowing of DNA replication by APC.  相似文献   

11.
The effect of the tus protein-terB sequence complex of Escherichia coli on the movement of the SV40 large tumor antigen (T antigen)-mediated replication fork during SV40 DNA replication in vitro has been examined. In the monopolymerase and dipolymerase systems, the tus protein-terB complex efficiently blocked the replication fork movement in a polar fashion, as observed in prokaryotic replication systems. With crude cytosolic extracts of HeLa cells, the same polarity of fork arrest was observed, but the block of replication fork movement was inefficient. These results indicate that the structure of the prokaryotic tus protein-terB complex allows it to block replication fork movement in an orientation-dependent manner. We also show that the tus protein-terB complex blocks the 3'----5' helicase action of T antigen in a polar fashion, using substrates comprised of single-stranded M13 DNA with either a 52-base pair (bp) or 29-bp duplex containing the terB sequence. The tus protein-terB complex formed on the 52-bp duplex was less effective than the complex formed on the 29-bp duplex in blocking the helicase action of T antigen. With the 52-bp duplex substrate, T antigen movement was only partially (30%) blocked by the tus protein-terB sequence complex in the active orientation, whereas the E. coli dnaB helicase moving 5'----3' was blocked more than 90% by the complex in the active orientation. However, with the shorter 29-bp duplex substrate, the complex blocked the T antigen helicase activity about 75%, whereas the dnaB helicase activity was completely blocked. Altogether, these results suggest that the T antigen helicase activity, when coupled to DNA replication, is more susceptible to arrest by the tus protein-terB complex than the T antigen functioning as a helicase alone.  相似文献   

12.
Cycling mammalian cells that are rendered extremely hypoxic (less than 4 ppm O2) tend to accumulate in a pre-DNA-synthesis stage. It is not clear whether or not this is the result of an active regulation by the cells. In the present study we have rendered cells, synchronized by mitotic selection, extremely hypoxic over a relatively long period of time (up to 48 h). We have recorded cell cycle progression during hypoxia as well as cell inactivation depending on where in the cell cycle the cells were located when the hypoxic treatment was started. Three main conclusions are drawn: 1 the cell cycle arrest in late-G1 is complete even during a long-lasting (24 h) hypoxic treatment: 2 while cells in early- and mid-S are completely arrested and quickly inactivated under hypoxic conditions, cells in late-S, G2 and mitosis are able to continue cell cycle progression and divide; 3 whether the cells are located in G2, mitosis or early-G1 at the onset of hypoxia, they were able to survive relatively long-lasting hypoxic treatment. The present results are in favour of the view that the pre-DNA-synthetic arrest induced by extreme hypoxia may function to rescue the cells from severely damaging effects that would appear if the cells were able to initiate DNA synthesis.  相似文献   

13.
Recently we isolated Rad24, a 14-3-3 homologue, which is essential for DNA damage checkpoint, as a Raf-1 interacting protein by screening a Schizosaccharomyces pombe (S. pombe) cDNA library. Raf-1 was also found to recognize Cdc25 that is sequestered and inactivated by Rad24. In the present study, experiments were performed to determine the effect of overexpression of Raf-1 proteins on asynchronously growing S. pombe cells. The overexpression of Rad24 induced elongated cell morphology and reduction in growth rate, resulting in cell cycle arrest while the overexpression of catalytically active Raf-1 led to a decrease in cell size at division in S. pombe. However, the active Raf-1 failed to rescue the growth arrest induced by Rad24 overexpression. In addition, the cells carrying catalytically active Raf-1 were significantly more radiosensitive than those from a normal control as assessed by ultraviolet sensitivity assay, suggesting that constitutive overproduction of Raf-1 kinase can revert DNA replication checkpoint arrest caused by UV irradiation. Taken together, these data suggest that Raf-1 may interfere with the role of Rad24 by competing with Rad24 for binding to Cdc25 in DNA repair, bypassing the checkpoint pathway through Cdc25 activation.  相似文献   

14.
Collisions between replication forks and topoisomerase-drug-DNA ternary complexes result in the inhibition of DNA replication and the conversion of the normally reversible ternary complex to a nonreversible form. Ultimately, this can lead to the double strand break formation and subsequent cell death. To understand the molecular mechanisms of replication fork arrest by the ternary complexes, we have investigated molecular events during collisions between DNA helicases and topoisomerase-DNA complexes. A strand displacement assay was employed to assess the effect of topoisomerase IV (Topo IV)-norfloxacin-DNA ternary complexes on the DnaB, T7 gene 4 protein, SV40 T-antigen, and UvrD DNA helicases. The ternary complexes inhibited the strand displacement activities of these DNA helicases. Unlike replication fork arrest, however, this general inhibition of DNA helicases by Topo IV-norfloxacin-DNA ternary complexes did not require the cleavage and reunion activity of Topo IV. We also examined the reversibility of the ternary complexes after collisions with these DNA helicases. UvrD converted the ternary complex to a nonreversible form, whereas DnaB, T7 gene 4 protein, and SV40 T-antigen did not. These results suggest that the inhibition of DnaB translocation may be sufficient to arrest the replication fork progression but it is not sufficient to generate cytotoxic DNA lesion.  相似文献   

15.
E36 ts24 is a temperature-sensitive cell cycle mutant which has been derived from the Chinese hamster lung cell line E36. This mutant is arrested in phase S when incubated at the restrictive temperature (40.3 degrees C) for growth. At this temperature, proliferation of the mutant cells ceases after 10 h. About 2 h earlier, DNA synthesis is arrested. These kinetic studies indicate that the execution point of the mutant cells is in early S phase well beyond the G1/S boundary. The pattern of replication bands in E36 ts24 cell grown for 9 h at 40.3 degrees C strengthen the kinetic studies and map the execution point to early S phase. The exact point of arrest of the mutant cells in phase S was mapped in early S phase near the execution point. At the point of arrest the cells continue to synthesize DNA at at a high rate but practically all of the newly synthesized DNA is degraded. This high rate of DNA degradation is limited to nascent DNA at the point of arrest. In the presence of 5-bromodeoxyuridine (5-BudR), the last E36 ts24 cells which reach mitosis at the restrictive temperature for growth show asymmetric replication bands which illustrate DNA degradation and resynthesis occurring in these cells at 40.3 degrees C.  相似文献   

16.
17.
Although MCM2 is obviously important for the initiation of eukaryotic DNA replication, its role in O2 dependent regulation of replicon initiation is poorly understood. In this report, I analysed the changes of MCM2 during the transition from hypoxically suppressed replicon initiation to the burst of initiation triggered by reoxygenation in T24 cells. A high level of chromatin bound and nucleosolic MCM2 was found under the hypoxic replicon arrest. In contrast low cytosolic MCM2 was noticed. Recovery of O2 induced phosphorylation and diminution of chromatin bound MCM2, whereas cytosolic MCM2 increased. The level of chromatin bound Cdc7 did not change significantly upon reoxygenation. However, after reoxygenation, significant phosphorylation of Cdc7 and an increase of coimmunoprecipitation with its substrate (MCM2) were observed. This provides a hint that reoxygenation may promote the kinase activity of Cdc7. These changes might be the critical factors in O2 dependent regulation of replicon initiation. Moreover, phosphorylation of Cdc7 by Cdk2 can be observed in vitro, but seems to fail to regulate the level of chromatin bound Cdc7 as well as the changes of MCM2 in response to reoxygenation of hypoxically suppressed cells.  相似文献   

18.
We have used a novel method to activate the DNA damage S-phase checkpoint response in Saccharomyces cerevisiae to slow lagging-strand DNA replication by exposing cells expressing a drug-sensitive DNA polymerase δ (L612M-DNA pol δ) to the inhibitory drug phosphonoacetic acid (PAA). PAA-treated pol3-L612M cells arrest as large-budded cells with a single nucleus in the bud neck. This arrest requires all of the components of the S-phase DNA damage checkpoint: Mec1, Rad9, the DNA damage clamp Ddc1-Rad17-Mec3, and the Rad24-dependent clamp loader, but does not depend on Mrc1, which acts as the signaling adapter for the replication checkpoint. In addition to the above components, a fully functional mismatch repair system, including Exo1, is required to activate the S-phase damage checkpoint and for cells to survive drug exposure. We propose that mismatch repair activity produces persisting single-stranded DNA gaps in PAA-treated pol3-L612M cells that are required to increase DNA damage above the threshold needed for checkpoint activation. Our studies have important implications for understanding how cells avoid inappropriate checkpoint activation because of normal discontinuities in lagging-strand replication and identify a role for mismatch repair in checkpoint activation that is needed to maintain genome integrity.  相似文献   

19.
Cells exposed to UV irradiation are predominantly arrested at S-phase as well as at the G(1)/S boundary while repair occurs. It is not known how UV irradiation induces S-phase arrest and yet permits DNA repair; however, UV-induced inhibition of replication is efficiently reversed by the addition of replication protein A (RPA), suggesting a role for RPA in this regulatory event. Here, we show evidence that DNA-dependent protein kinase (DNA-PK), plays a role in UV-induced replication arrest. DNA synthesis of M059K (DNA-PK catalytic subunit-positive (DNA-PKcs(+))), as measured by [(3)H]thymidine incorporation, was significantly arrested by 4 h following UV irradiation, whereas M059J (DNA-PKcs(-)) cells were much less affected. Similar results were obtained with the in vitro replication reactions where immediate replication arrest occurred in DNA-PKcs(+) cells following UV irradiation, and only a gradual decrease in replication activity was observed in DNA-PKcs(-) cells. Reversal of replication arrest was observed at 8 h following UV irradiation in DNA-PKcs(+) cells but not in DNA-PKcs(-) cells. Reversal of UV-induced replication arrest was also observed in vitro by the addition of a DNA-PK inhibitor, wortmannin, or by immunodepletion of DNA-PKcs, supporting a positive role for DNA-PK in damage-induced replication arrest. The RPA-containing fraction from UV-irradiated DNA-PKcs(+) cells poorly supported DNA replication, whereas the replication activity of the RPA-containing fraction from DNA-PKcs(-) cells was not affected by UV, suggesting that DNA-PKcs may be involved in UV-induced replication arrest through modulation of RPA activity. Together, our results strongly suggest a role for DNA-PK in S-phase (replication) arrest in response to UV irradiation.  相似文献   

20.
The synchronization effects of the plant amino acid mimosine on proliferating higher eukaryotic cells are still controversial. Here, I show that 0.5 mM mimosine can induce a cell cycle arrest of human somatic cells in late G1 phase, before establishment of active DNA replication forks. The DNA content of nuclei isolated from mimosine-treated cells was determined by flow cytometry. The presence or absence of DNA replication forks in these isolated nuclei was then detected by DNA replication run-on assays in vitro. Treatment of asynchronously proliferating HeLa or EJ30 cells for 24 h with 0.5 mM mimosine resulted in a population synchronized in late G1 phase. S phase entry was inhibited by 0.5 mM mimosine in cells released from a block in mitosis or from quiescence. When added to early S phase cells, 0.5 mM mimosine did not prevent S phase transit, but delayed progression through late stages of S phase after a lag of 4 h, eventually resulting in a G1 phase population by preventing entry into the subsequent S phase. In contrast, lower concentrations of mimosine (0.1-0.2 mM) failed to prevent S phase entry, resulting in cells containing active DNA replication foci. The G1 phase arrest by 0.5 mM mimosine was reversible upon mimosine withdrawal. This synchronization protocol using 0.5 mM mimosine can be exploited for studying the initiation of human DNA replication in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号