首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological systems often involve chemical reactions occurring in low-molecule-number regimes, where fluctuations are not negligible and thus stochastic models are required to capture the system behaviour. The resulting models are generally quite large and complex, involving many reactions and species. For clarity and computational tractability, it is important to be able to simplify these systems to equivalent ones involving fewer elements. While many model simplification approaches have been developed for deterministic systems, there has been limited work on applying these approaches to stochastic modelling. Here, we describe a method that reduces the complexity of stochastic biochemical network models, and apply this method to the reduction of a mammalian signalling cascade and a detailed model of the process of bacterial gene expression. Our results indicate that the simplified model gives an accurate representation for not only the average numbers of all species, but also for the associated fluctuations and statistical parameters.  相似文献   

2.
3.
In many biochemical reactions occurring in living cells, number of various molecules might be low which results in significant stochastic fluctuations. In addition, most reactions are not instantaneous, there exist natural time delays in the evolution of cell states. It is a challenge to develop a systematic and rigorous treatment of stochastic dynamics with time delays and to investigate combined effects of stochasticity and delays in concrete models.We propose a new methodology to deal with time delays in biological systems and apply it to simple models of gene expression with delayed degradation. We show that time delay of protein degradation does not cause oscillations as it was recently argued. It follows from our rigorous analysis that one should look for different mechanisms responsible for oscillations observed in biological experiments.We develop a systematic analytical treatment of stochastic models of time delays. Specifically we take into account that some reactions, for example degradation, are consuming, that is: once molecules start to degrade they cannot be part in other degradation processes.We introduce an auxiliary stochastic process and calculate analytically the variance and the autocorrelation function of the number of protein molecules in stationary states in basic models of delayed protein degradation.  相似文献   

4.
This work studies two mathematical models for describing the motion of phototactic bacteria, i.e., bacteria that move toward light. Based on experimental observations, we conjecture that the motion of the colony toward light depends on certain group dynamics. These group dynamics are hypothesized to be coordinated through an individual property of each bacterium, which we refer to as excitation. The excitation of each individual bacterium is assumed to change based on the excitation of the neighboring bacteria. Under these assumptions, we propose a (discrete) cellular automaton model and derive an analogous stochastic model for describing the evolution in time of the location of bacteria, the excitation of individual bacteria, and a surface memory effect. We provide simulation results and discuss in detail the role of the various model parameters in controlling the emerging dynamics.  相似文献   

5.
Stochastic Models of Soil Denitrification   总被引:1,自引:1,他引:0       下载免费PDF全文
Soil denitrification is a highly variable process that appears to be lognormally distributed. This variability is manifested by large sample coefficients of variation for replicate estimates of soil core denitrification rates. Deterministic models for soil denitrification have been proposed in the past, but none of these models predicts the approximate lognormality exhibited by natural denitrification rate estimates. In this study, probabilistic (stochastic) models were developed to understand how positively skewed distributions for field denitrification rate estimates result from the combined influences of variables known to affect denitrification. Three stochastic models were developed to describe the distribution of measured soil core denitrification rates. The driving variables used for all the models were denitrification enzyme activity and CO2 production rates. The three models were distinguished by the functional relationships combining these driving variables. The functional relationships used were (i) a second-order model (model 1), (ii) a second-order model with a threshold (model 2), and (iii) a second-order saturation model (model 3). The parameters of the models were estimated by using 12 separate data sets (24 replicates per set), and their abilities to predict denitrification rate distributions were evaluated by using three additional independent data sets of 180 replicates each. Model 2 was the best because it produced distributions of denitrification rate which were not significantly different (P > 0.1) from distributions of measured denitrification rates. The generality of this model is unknown, but it accurately predicted the mean denitrification rates and accounted for the stochastic nature of this variable at the site studied. The approach used in this study may be applicable to other areas of ecological research in which accounting for the high spatial variability of microbiological processes is of interest.  相似文献   

6.
7.
Drawing on phonology research within the generative linguistics tradition, stochastic methods, and notions from complex systems, we develop a modelling paradigm linking phonological structure, expressed in terms of syllables, to speech movement data acquired with 3D electromagnetic articulography and X-ray microbeam methods. The essential variable in the models is syllable structure. When mapped to discrete coordination topologies, syllabic organization imposes systematic patterns of variability on the temporal dynamics of speech articulation. We simulated these dynamics under different syllabic parses and evaluated simulations against experimental data from Arabic and English, two languages claimed to parse similar strings of segments into different syllabic structures. Model simulations replicated several key experimental results, including the fallibility of past phonetic heuristics for syllable structure, and exposed the range of conditions under which such heuristics remain valid. More importantly, the modelling approach consistently diagnosed syllable structure proving resilient to multiple sources of variability in experimental data including measurement variability, speaker variability, and contextual variability. Prospects for extensions of our modelling paradigm to acoustic data are also discussed.  相似文献   

8.
The PyDSTool software environment is designed to develop, simulate, and analyze dynamical systems models, particularly for biological applications. Unlike the engineering application focus and graphical specification environments of most general purpose simulation tools, PyDSTool provides a programmatic environment well suited to exploratory data- and hypothesis-driven biological modeling problems. In this work, we show how the environment facilitates the application of hybrid dynamical modeling to the reverse engineering of complex biophysical dynamics; in this case, of an excitable membrane. The example demonstrates how the software provides novel tools that support the inference and validation of mechanistic hypotheses and the inclusion of data constraints in both quantitative and qualitative ways. The biophysical application is broadly relevant to models in the biosciences. The open source and platform-independent PyDSTool package is freely available under the BSD license from http://sourceforge.net/projects/pydstool/. The hosting service provides links to documentation and online forums for user support.  相似文献   

9.
Experimental data from neuroscience suggest that a substantial amount of knowledge is stored in the brain in the form of probability distributions over network states and trajectories of network states. We provide a theoretical foundation for this hypothesis by showing that even very detailed models for cortical microcircuits, with data-based diverse nonlinear neurons and synapses, have a stationary distribution of network states and trajectories of network states to which they converge exponentially fast from any initial state. We demonstrate that this convergence holds in spite of the non-reversibility of the stochastic dynamics of cortical microcircuits. We further show that, in the presence of background network oscillations, separate stationary distributions emerge for different phases of the oscillation, in accordance with experimentally reported phase-specific codes. We complement these theoretical results by computer simulations that investigate resulting computation times for typical probabilistic inference tasks on these internally stored distributions, such as marginalization or marginal maximum-a-posteriori estimation. Furthermore, we show that the inherent stochastic dynamics of generic cortical microcircuits enables them to quickly generate approximate solutions to difficult constraint satisfaction problems, where stored knowledge and current inputs jointly constrain possible solutions. This provides a powerful new computing paradigm for networks of spiking neurons, that also throws new light on how networks of neurons in the brain could carry out complex computational tasks such as prediction, imagination, memory recall and problem solving.  相似文献   

10.
In this article, we have considered two families of predictors for the simultaneous prediction of actual and average values of study variable in a linear regression model when a set of stochastic linear constraints binding the regression coefficients is available. These families arise from the method of mixed regression estimation. Performance properties of these families are analyzed when the objective is to predict values outside the sample and within the sample.  相似文献   

11.
The fluorescent ubiquitination-based cell cycle indicator, also known as FUCCI, allows the visualization of the G1 and S/G2/M cell cycle phases of individual cells. FUCCI consists of two fluorescent probes, so that cells in the G1 phase fluoresce red and cells in the S/G2/M phase fluoresce green. FUCCI reveals real-time information about cell cycle dynamics of individual cells, and can be used to explore how the cell cycle relates to the location of individual cells, local cell density, and different cellular microenvironments. In particular, FUCCI is used in experimental studies examining cell migration, such as malignant invasion and wound healing. Here we present, to our knowledge, new mathematical models that can describe cell migration and cell cycle dynamics as indicated by FUCCI. The fundamental model describes the two cell cycle phases, G1 and S/G2/M, which FUCCI directly labels. The extended model includes a third phase, early S, which FUCCI indirectly labels. We present experimental data from scratch assays using FUCCI-transduced melanoma cells, and show that the predictions of spatial and temporal patterns of cell density in the experiments can be described by the fundamental model. We obtain numerical solutions of both the fundamental and extended models, which can take the form of traveling waves. These solutions are mathematically interesting because they are a combination of moving wavefronts and moving pulses. We derive and confirm a simple analytical expression for the minimum wave speed, as well as exploring how the wave speed depends on the spatial decay rate of the initial condition.  相似文献   

12.
Generalising a site-based stochastic model due to Royama, Solé et al. and Sumpter et al., we investigate competition in a single species with discrete, non-overlapping generations. We show that the deterministic limit of the dynamics depends on a few easily interpretable parameters only. Further, we discuss qualitative properties and limit sets of the corresponding difference equations, and we relate these to modes of competition. Moreover, a detailed analysis of stochastic effects in some relevant scenarios indicates that the behaviour of the stochastic model is very sensitive to further details of the model.  相似文献   

13.
Quantitative understanding of the kinetics of lymphocyte proliferation and death upon activation with an antigen is crucial for elucidating factors determining the magnitude, duration and efficiency of the immune response. Recent advances in quantitative experimental techniques, in particular intracellular labeling and multi-channel flow cytometry, allow one to measure the population structure of proliferating and dying lymphocytes for several generations with high precision. These new experimental techniques require novel quantitative methods of analysis. We review several recent mathematical approaches used to describe and analyze cell proliferation data. Using a rigorous mathematical framework, we show that two commonly used models that are based on the theories of age-structured cell populations and of branching processes, are mathematically identical. We provide several simple analytical solutions for a model in which the distribution of inter-division times follows a gamma distribution and show that this model can fit both simulated and experimental data. We also show that the estimates of some critical kinetic parameters, such as the average inter-division time, obtained by fitting models to data may depend on the assumed distribution of inter-division times, highlighting the challenges in quantitative understanding of cell kinetics.  相似文献   

14.
Geometric Analysis of Ecological Models with Slow and Fast Processes   总被引:4,自引:1,他引:3  
The interaction of fast and slow processes is an integral part of the sudden large shifts that sometimes occur in ecosystems. To study the effects of slow/fast variables on ecosystems, we used a range of examples from natural and exploited aquatic and terrestrial systems. So-called catastrophic bifurcations in the dynamics of the fast components are at the heart of such dramatic shifts. We discuss some of the most important bifurcations and show how they can be analyzed. Subsequently, we show how the interaction with slowly changing variables can be understood from graphs constructed in a simple way using the singular perturbation approach. Received 30 November 1999; accepted 30 May 2000.  相似文献   

15.
The purpose of this work is reviewing some reduction results to deal with systems of nonautonomous ordinary differential equations with two time scales. They could be included among the so-called approximate aggregation methods. The existence of different time scales in a system, together with some long-term features, are used to build up a simpler system governed by a lesser number of state variables. The asymptotic behavior of the latter system is then used to describe the asymptotic behaviour of the former one. The reduction results are stated in two particular but important cases: periodic systems and asymptotically autonomous systems. The reduction results are illustrated with the help of simple spatial SIS epidemic models including either periodic or asymptotically autonomous terms.  相似文献   

16.
As the world population ages, the patients per physician ratio keeps on increasing. This is even more important in the domain of chronic pathologies where people are usually monitored for years and need regular consultations. To address this problem, we propose an automated system to monitor a patient population, detecting anomalies in instantaneous data and in their temporal evolution, so that it could alert physicians. By handling the population of healthy patients autonomously and by drawing the physicians' attention to the patients-at-risk, the system allows physicians to spend comparatively more time with patients who need their services. In such a system, the interaction between the patients, the diagnosis module, and the physicians is very important. We have based this system on a combination of stochastic models, fuzzy filters, and strong medical semantics. We particularly focused on a particular tele-medicine application: the Diatelic Project. Its objective is to monitor chronic kidney-insufficient patients and to detect hydration troubles. During two years, physicians from the ALTIR have conducted a prospective randomized study of the system. This experiment clearly shows that the proposed system is really beneficial to the patients' health.  相似文献   

17.
Circadian rhythms which occur with a period close to 24 h in nearly all living organisms originate from the negative autoregulation of gene expression.Deterministic models based on genetic regulatory processes account for theoccurrence of circadian rhythms in constant environmental conditions (e.g.constant darkness), for entrainment of these rhythms by light-dark cycles, and for their phase-shifting by light pulses. At low numbers of protein and mRNA molecules, it becomes necessary to resort to stochastic simulations to assess the influence of molecular noise on circadian oscillations. We address the effect of molecular noise by considering two stochastic versions of a core model for circadian rhythms. The deterministic version of this core modelwas previously proposed for circadian oscillations of the PER protein in Drosophila and of the FRQ protein in Neurospora. In the first, non-developed version of the stochastic model, we introduce molecular noise without decomposing the deterministic mechanism into detailed reaction steps while in the second, developed version we carry out such a detailed decomposition. Numerical simulations of the two stochastic versions of the model are performed by means of the Gillespie method. We compare the predictions of the deterministic approach with those of the two stochastic models, with respect both to sustained oscillations of the limit cycle type and to the influence of the proximity of a bifurcation point beyond which the system evolves to a stable steady state. The results indicate that robust circadian oscillations can occur even when the numbers of mRNA and nuclear protein involved in the oscillatory mechanism are reduced to a few tens orhundreds, respectively. The non-developed and developed versions of the stochastic model yield largely similar results and provide good agreement with the predictions of the deterministic model for circadian rhythms.  相似文献   

18.
Cell migration triggered by pseudopodia (or “false feet”) is the most used method of locomotion. A 3D finite element model of a cell migrating over a 2D substrate is proposed, with a particular focus on the mechanical aspects of the biological phenomenon. The decomposition of the deformation gradient is used to reproduce the cyclic phases of protrusion and contraction of the cell, which are tightly synchronized with the adhesion forces at the back and at the front of the cell, respectively. First, a steady active deformation is considered to show the ability of the cell to simultaneously initiate multiple pseudopodia. Here, randomness is considered as a key aspect, which controls both the direction and the amplitude of the false feet. Second, the migration process is described through two different strategies: the temporal and the spatial sensing models. In the temporal model, the cell “sniffs” the surroundings by extending several pseudopodia and only the one that receives a positive input will become the new leading edge, while the others retract. In the spatial model instead, the cell senses the external sources at different spots of the membrane and only protrudes one pseudopod in the direction of the most attractive one.  相似文献   

19.
Abstract: Ecologists and wildlife biologists rely on periodic observation of radiocollared animals to study habitat use, survival, movement, and migration, resulting in response times (e.g., mortality and migration) known only to occur within an interval of time. We illustrate methods for analyzing interval-censored data using data on the timing of fall migration (from spring-summer-fall to winter ranges) for white-tailed deer (Odocoileus virginianus) in northern Minnesota, USA, during years 1991–1992 to 2005–2006. We compare both nonparametric and parametric methods for estimating the cumulative distribution function of migration times, and we suggest a parametric (cure rate) model that accounts for conditional (facultative) migrators as a potential alternative to traditional parametric models. Lastly, we illustrate methods for exploring the effect of environmental covariates on migration timing. Models with time-dependent covariates (snow depth, temp) were sensitive to the treatment of the data (as interval-censored or known event times), suggesting the need to account for interval-censoring when modeling the effect of these covariates.  相似文献   

20.
Biochemical systems involve chemical reactions occurring in low-number regimes, wherein fluctuations are not negligible and thus stochastic models are required to capture the system behaviour. The resulting models are often quite large and complex, involving many reactions and species. For clarity and computational tractability, it is important to be able to simplify these systems to equivalent ones involving fewer elements. While many model simplification approaches have been developed for deterministic systems, there has been limited work on applying these approaches to stochastic modelling. Here, we propose a method that reduces the complexity of stochastic biochemical network models, and apply this method to the reduction of a mammalian signalling cascade. Our results indicate that the simplified model gives an accurate representation for not only the average number of all species, but also for the associated fluctuations and statistical parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号