首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Wu X  Liu D  Lee MH  Golden JW 《Journal of bacteriology》2004,186(19):6422-6429
The patS gene encodes a small peptide that is required for normal heterocyst pattern formation in the cyanobacterium Anabaena sp. strain PCC 7120. PatS is proposed to control the heterocyst pattern by lateral inhibition. patS minigenes were constructed and expressed by different developmentally regulated promoters to gain further insight into PatS signaling. patS minigenes patS4 to patS8 encode PatS C-terminal 4 (GSGR) to 8 (CDERGSGR) oligopeptides. When expressed by P(petE), P(patS), or P(rbcL) promoters, patS5 to patS8 inhibited heterocyst formation but patS4 did not. In contrast to the full-length patS gene, P(hepA)-patS5 failed to restore a wild-type pattern in a patS null mutant, indicating that PatS-5 cannot function in cell-to-cell signaling if it is expressed in proheterocysts. To establish the location of the PatS receptor, PatS-5 was confined within the cytoplasm as a gfp-patS5 fusion. The green fluorescent protein GFP-PatS-5 fusion protein inhibited heterocyst formation. Similarly, full-length PatS with a C-terminal hexahistidine tag inhibited heterocyst formation. These data indicate that the PatS receptor is located in the cytoplasm, which is consistent with recently published data indicating that HetR is a PatS target. We speculated that overexpression of other Anabaena strain PCC 7120 RGSGR-encoding genes might show heterocyst inhibition activity. In addition to patS and hetN, open reading frame (ORF) all3290 and an unannotated ORF, orf77, encode an RGSGR motif. Overexpression of all3290 and orf77 under the control of the petE promoter inhibited heterocyst formation, indicating that the RGSGR motif can inhibit heterocyst development in a variety of contexts.  相似文献   

3.
Within the IGF axis, the insulin-like growth factor-binding proteins (IGFBPs) are known to play a pivotal role in cell proliferation and differentiation. Defined proteolysis of the IGFBPs is proposed to be an essential mechanism for regulating IGF bioavailability. The generated IGFBP fragments in part exhibit different IGF-dependent and -independent biological activities. Characterizing naturally occurring forms of IGFBPs in human plasma, we identified both a N- and a C-terminal fragment of IGFBP-4 by means of immunoreactivity screening. As a source for peptide isolation, we used large amounts of human hemofiltrate obtained from patients with chronic renal failure. Purification of the IGFBP-4 peptides from hemofiltrate was performed by consecutive cation-exchange and reverse-phase chromatographic steps. Mass spectrometric and sequence analysis revealed an M(r) of 13 233 for the purified N-terminal fragment spanning residues Asp(1)-Phe(122) of IGFBP-4 and an M(r) of 11 344 for the C-terminal fragment extending from Lys(136) to Glu(237). Proteolytic digestion and subsequent biochemical analysis showed that the six cysteines of the C-terminal IGFBP-4 fragment are linked between residues 153-183, 194-205, and 207-228 (disulfide bonding pattern, 1-2, 3-4, and 5-6). Plasmon resonance spectroscopy, ligand blot analysis, and saturation and displacement studies demonstrated a very low affinity of the C-terminal IGFBP-4 fragment for the IGFs (IGF-II, K(d) = 690 nM; IGF-I, K(d) > 60 nM), whereas the N-terminal fragment retained significant IGF binding properties (IGF-II, K(d) = 17 nM; IGF-I, K(d) = 5 nM). This study provides the first molecular characterization of circulating human IGFBP-4 fragments formed in vivo exhibiting an at least 5-fold decrease in the affinity of the N-terminal IGFBP-4 fragment for the IGFs and a very low IGF binding capacity of the C-terminal fragment.  相似文献   

4.
5.
6.
HetR is the master regulator of heterocyst differentiation in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. Genetic selection was used to identify 33 amino acid substitutions in HetR that reduced the proportion of cells undergoing heterocyst differentiation to less than 2%. Conservative substitutions in the wild-type HetR protein revealed three mutations that dramatically reduced the amount of heterocyst differentiation when the mutant allele was present in place of the wild-type allele on a replicating plasmid in a mutant lacking hetR on the chromosome. An H69Y substitution resulted in heterocyst formation among less than 0.1% of cells, and D17E and G36A substitutions resulted in a Het- phenotype, compared to heterocyst formation among approximately 25% of cells with the wild-type hetR under the same conditions. The D17E substitution prevented DNA binding activity exhibited by wild-type HetR in mobility shift assays, whereas G36A and H69Y substitutions had no affect on DNA binding. D17E, G36A, and H69Y substitutions also resulted in higher levels of the corresponding HetR protein than of the wild-type protein when each was expressed from an inducible promoter in a hetR deletion strain, suggesting an effect on HetR protein turnover. Surprisingly, C48A and S152A substitutions, which were previously reported to result in a Het- phenotype, were found to have no effect on heterocyst differentiation or patterning when the corresponding mutations were introduced into an otherwise wild-type genetic background in Anabaena sp. strain PCC 7120. The clustering of mutations that satisfied the positive selection near the amino terminus suggests an important role for this part of the protein in HetR function.  相似文献   

7.
Apolipoprotein E (apoE) is an important lipid-transport protein in human plasma and brain. It has three common isoforms (apoE2, apoE3, and apoE4). ApoE is a major genetic risk factor in heart disease and in neurodegenerative disease, including Alzheimer's disease. The interaction of apoE with heparan sulfate proteoglycans plays an important role in lipoprotein remnant uptake and likely in atherogenesis and Alzheimer's disease. Here we report our studies of the interaction of the N-terminal domain of apoE4 (residues 1-191), which contains the major heparin-binding site, with an enzymatically prepared heparin oligosaccharide. Identified by its high affinity for the N-terminal domain of apoE4, this oligosaccharide was determined to be an octasaccharide of the structure DeltaUAp2S(1-->[4)-alpha-D-GlcNpS6S(1-->4)-alpha-L-IdoAp2S(1-->](3)4)-alpha-D-GlcNpS6S by nuclear magnetic resonance spectroscopy, capillary electrophoresis, and polyacrylamide gel electrophoresis. Kinetic analysis of the interaction between the N-terminal apoE4 fragment and immobilized heparin by surface plasmon resonance yielded a K(d) of 150 nM. A similar binding constant (K(d) = 140 nM) was observed for the interaction between immobilized N-terminal apoE4 and the octasaccharide. Isothermal titration calorimetry revealed a K(d) of 75 nM for the interaction of the N-terminal apoE fragment and the octasaccharide with a binding stoichiometry of approximately 1:1. Using previous studies and molecular modeling, we propose a binding site for this octasaccharide in a basic residue-rich region of helix 4 of the N-terminal fragment. From the X-ray crystal structure of the N-terminal apoE4, we predicted that binding of the octasaccharide at this site would result in a change in intrinsic fluorescence. This prediction was confirmed experimentally by an observed increase in fluorescence intensity with octasaccharide binding corresponding to a K(d) of approximately 1 microM.  相似文献   

8.
We present, herein, the evidence for lactoferrin (Lf) binding sites in brain endothelial capillary cells (BCECs) and mouse brain. The results from confocal microscopy showed the presence of Lf receptors on the surface of BCECs and the receptor-mediated endocytosis for Lf to enter the cells. Saturation binding analyses revealed that Lf receptors exhibited two classes of binding sites in BCECs (high affinity: dissociation constant (K (d)) = 6.77 nM, binding site density (B (max)) = 10.3 fmol bound/mug protein; low affinity: K (d) = 4815 nM, B (max) = 1190 fmol bound/mug protein) and membrane preparations of mouse brain (high affinity: K (d) = 10.61 nM, B (max) = 410 fmol bound/mug protein; low affinity: K (d) = 2228 nM, B (max) = 51641 fmol bound/mug protein). The distribution study indicated the effective uptake of (125)I-Lf in brain after intravenous administration. The present study provides experimental evidence for the application of Lf as a novel ligand for brain targeting.  相似文献   

9.
C Martin  C F Higgins  R Callaghan 《Biochemistry》2001,40(51):15733-15742
Conceptually one may envisage that substrate binding sites on the ABC transporter P-gp cycle between high- and low-affinity conformations in response to signals arising from nucleotide hydrolysis to effect active transport. A radioligand binding assay was used to characterize the interaction of [3H]vinblastine with P-gp and determine how drug binding site parameters are altered during a catalytic cycle of P-gp. In the absence of nucleotide, we show that [3H]vinblastine interacts with a single class of binding site with high affinity (K(d) = 80 +/- 18 nM). In the presence of the nonhydrolyzable ATP analogue AMP-PNP, the drug binding site was in a low-affinity conformation, manifest by a 9-fold increase in K(d) (K(d) = 731 +/- 20 nM). There was no alteration in the binding capacity, reflecting a complete shift in the high-affinity site to a low-affinity form. The posthydrolytic (Mg-ADP-V(i) bound) form of P-gp also exhibited low-affinity substrate binding (K(d) = 446 +/- 57 nM). Restoration of the high-affinity drug binding site conformation (K(d) = 131 +/- 32 nM) did not occur until release of phosphate from the posthydrolysis P-gp-Mg-ADP-P(i). complex. Our results suggest that alteration of the affinity of the vinblastine binding site involves only one nucleotide binding domain per transport cycle. The binding of ATP provides the signal to instigate this change, while release of phosphate post-ATP hydrolysis returns the transporter to its original state to complete the cycle.  相似文献   

10.
11.
An unusual feature of the cocaine-binding aptamer is that it binds quinine much tighter than the ligand it was selected for, cocaine. Here we expand the repertoire of ligands that this aptamer binds to include the quinine-based antimalarial compounds amodiaquine, mefloquine, chloroquine and primaquine. Using isothermal titration calorimetry (ITC) we show that amodiaquine is bound by the cocaine-binding aptamer with an affinity of (7?±?4) nM, one of the tightest aptamer-small molecule affinities currently known. Amodiaquine, mefloquine and chloroquine binding are driven by both a favorable entropy and enthalpy of binding, while primaquine, quinine and cocaine binding are enthalpy driven with unfavorable binding entropy. Using nuclear magnetic resonance (NMR) and ITC methods we show that these ligands compete for the same binding sites in the aptamer. Our identification of such a tight binding ligand for this aptamer should prove useful in developing new biosensor techniques and applications using the cocaine-binding aptamer as a model system.  相似文献   

12.
Intracellular trafficking of hydrophobic ligands is often mediated by specific binding proteins. The CRAL-TRIO motif is common to several lipid binding proteins including the cellular retinaldehyde binding protein (CRALBP), the alpha-tocopherol transfer protein (alpha-TTP), yeast phosphatidylinositol transfer protein (Sec14p), and supernatant protein factor (SPF). To examine the ligand specificity of these proteins, we measured their affinity toward a variety of hydrophobic ligands using a competitive [(3)H]-RRR-alpha-tocopherol binding assay. Alpha-TTP preferentially bound RRR-alpha-tocopherol over all other tocols assayed, exhibiting a K(d) of 25 nM. Binding affinities of other tocols for alphaTTP closely paralleled their ability to inhibit in vitro intermembrane transfer and their potency in biological assays. All other homologous proteins studied bound alpha-tocopherol but with pronouncedly weaker (> 10-fold) affinities than alpha-TTP. Sec14p demonstrated a K(d) of 373 nM for alpha-tocopherol, similar to that for its native ligand, phosphatidylinositol (381 nM). Human SPF had the highest affinity for phosphatidylinositol (216 nM) and gamma-tocopherol (268 nM) and significantly weaker affinity for alpha-tocopherol (K(d) 615 nM). SPF bound [(3)H]-squalene more weakly (879 nM) than the other ligands. Our data suggest that of all known CRAL-TRIO proteins, only alphaTTP is likely to serve as the physiological mediator of alpha-tocopherol's biological activity. Further, ligand promiscuity observed within this family suggests that caution should be exercised when suggesting protein function(s) from measurements utilizing a single ligand.  相似文献   

13.
Adhesion of pathogenic Leptospira spp. to mammalian cells is mediated by their adhesins interacting with host cell receptors. In a previous study, we have identified two potential fibronectin (Fn) binding sites in central variable region (LigBCen) and C-terminal variable region (LigBCtv) of LigB, an adhesin of pathogenic Leptospira spp. In this study, we have further localized the Fn-binding site on LigBCen and found a domain of LigB (LigBCen2) (amino acids 1014-1165) strongly bound to Fn. LigBCen2 bound to a 70kDa domain of Fn including N-terminal domain (NTD) and gelatin binding domain (GBD), but with a higher binding affinity to NTD (K(d)=272nM) than to GBD (K(d)=1200nM). Except Fn, LigBCen2 also bound laminin and fibrinogen. LigBCen2 could bind MDCK cells, and blocked the binding of Leptospira on MDCK cells by 45%. These results suggest that LigBCen2 contributed to high affinity binding on NTD or GBD of Fn, laminin, and fibrinogen and mediated Leptospira binding on host cells.  相似文献   

14.
Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the alpha subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K(d) of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site.  相似文献   

15.
Nitrogen-fixing heterocysts are arranged in a periodic pattern on filaments of the cyanobacterium Anabaena sp. strain PCC 7120 under conditions of limiting combined nitrogen. Patterning requires two inhibitors of heterocyst differentiation, PatS and HetN, which work at different stages of differentiation by laterally suppressing levels of an activator of differentiation, HetR, in cells adjacent to source cells. Here we show that the RGSGR sequence in the 287-amino-acid HetN protein, which is shared by PatS, is critical for patterning. Conservative substitutions in any of the five amino acids lowered the extent to which HetN inhibited differentiation when overproduced and altered the pattern of heterocysts in filaments with an otherwise wild-type genetic background. Conversely, substitution of amino acids comprising the putative catalytic triad of this predicted reductase had no effect on inhibition or patterning. Deletion of putative domains of HetN suggested that the RGSGR motif is the primary component of HetN required for both its inhibitory and patterning activity, and that localization to the cell envelope is not required for patterning of heterocysts. The intercellular signalling proteins PatS and HetN use the same amino acid motif to regulate different stages of heterocyst patterning.  相似文献   

16.
17.
We have quantitatively modeled heterocyst differentiation after fixed nitrogen step-down in the filamentous cyanobacterium Anabaena sp. PCC 7120 without lateral inhibition due to the patterning proteins PatS or HetN. We use cell growth and division together with fixed-nitrogen dynamics and allow heterocysts to differentiate upon the local exhaustion of available fixed nitrogen. Slow transport of fixed nitrogen along a shared periplasmic space allows for fast growing cells to differentiate ahead of their neighbors. Cell-to-cell variability in growth rate determines the initial heterocyst pattern. Early release of fixed nitrogen from committed heterocysts allows a significant fraction of vegetative cells to be retained at later times. We recover the experimental heterocyst spacing distributions and cluster size distributions of Khudyakov and Golden [Khudyakov, I.Y., Golden, J.W., 2004. Different functions of HetR, a master regulator of heterocyst differentiation in Anabaena sp PCC 7120, can be separated by mutation. Proc. Natl. Acad. Sci. U. S. A. 101, 16040-16045].  相似文献   

18.
Substrate recognition by Clp chaperones is dependent on interactions with motifs composed of specific peptide sequences. We studied the binding of short motif-bearing peptides to ClpA, the chaperone component of the ATP-dependent ClpAP protease of Escherichia coli in the presence of ATPgammaS and Mg2+ at pH 7.5. Binding was measured by isothermal titration calorimetry (ITC) using the peptide, AANDENYALAA, which corresponds to the SsrA degradation motif found at the C terminus of abnormal nascent polypeptides in vivo. One SsrA peptide was bound per hexamer of ClpA with an association constant (K(A)) of 5 x 10(6) m(-1). Binding was also assayed by changes in fluorescence of an N-terminal dansylated SsrA peptide, which bound with the same stoichiometry of one per ClpA hexamer (K(A) approximately 1 x 10(7) m(-1)). Similar results were obtained when ATP was substituted for ATPgammaS at 6 degrees C. Two additional peptides, derived from the phage P1 RepA protein and the E. coli HemA protein, which bear different substrate motifs, were competitive inhibitors of SsrA binding and bound to ClpA hexamers with K(A)' > 3 x 10(7) m(-1). DNS-SsrA bound with only slightly reduced affinity to deletion mutants of ClpA missing either the N-terminal domain or the C-terminal nucleotide-binding domain, indicating that the binding site for SsrA lies within the N-terminal nucleotide-binding domain. Because only one protein at a time can be unfolded and translocated by ClpA hexamers, restricting the number of peptides initially bound should avoid nonproductive binding of substrates and aggregation of partially processed proteins.  相似文献   

19.
The interaction of Lys-plasminogen and its fragments with fibrinogen fragment E was studied by equilibrium affinity binding. A quantitative analysis of binding parameters revealed two types of binding sites responsible for Lys-plasminogen interaction with the immobilized fragment E, i.e., with a high (Kd = 1.5 x 10(-6) M) and low (Kd = 82 x 10(-6) M) affinity ones. Among plasminogen fragments, only miniplasminogen and KI-3 bound immobilized fragment E and were eluted by epsilon-aminocaproic acid. Hence, two lysine binding sites may be involved in the binding of Lys-plasminogen to fragment E; they are localized in the KI-3 and K5 kringle structures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号