首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex external stimuli such as odorants are believed to be internally represented in the brain by spatiotemporal activity patterns of extensive neuronal ensembles. These activity patterns can be recorded by optical imaging techniques. However, optical imaging with conventional fluorescence dyes usually does not allow for resolving the activity of biologically defined groups of neurons. Therefore, specifically targeting reporter molecules to neuron populations of common genetic identity is an important goal. We report the use of the genetically encoded calcium-sensitive fluorescence protein cameleon 2.1 in the Drosophila brain. We visualized odorant-evoked intracellular calcium concentration changes in selectively labeled olfactory projection neurons both postsynaptically in the antennal lobe, the primary olfactory neuropil, and presynaptically in the mushroom body calyx, a structure involved in olfactory learning and memory. As a technical achievement, we show that calcium imaging with a genetically encoded fluorescence probe is feasible in a brain in vivo. This will allow one to combine Drosophila's advanced genetic tools with the physiological analysis of brain function. Moreover, we report for the first time optical imaging recordings in synaptic regions of the Drosophila mushroom body calyx and antennal lobe. This provides an important step for the use of Drosophila as a model system in olfaction.  相似文献   

2.
Zebrafish became a model of choice for neurobiology because of the transparency of its brain and because of its amenability to genetic manipulation. In particular, at early stages of development the intact larva is an ideal system to apply optical techniques for deep imaging in the nervous system, as well as genetically encoded tools for targeting subsets of neurons and monitoring and manipulating their activity. For these applications,new genetically encoded optical tools, fluorescent sensors, and light-gated channels have been generated,creating the field of \optogenetics." It is now possible to monitor and control neuronal activity with minimal perturbation and unprecedented spatio-temporal resolution.We describe here the main achievements that have occurred in the last decade in imaging and manipulating neuronal activity in intact zebrafish larvae. We provide also examples of functional dissection of neuronal circuits achieved with the applications of these techniques in the visual and locomotor systems.  相似文献   

3.
In this video, we demonstrate the preparation of primary neuronal cultures from the brains of late stage Drosophila pupae. The procedure begins with the removal of brains from animals at 70-78 hrs after puparium formation. The isolated brains are shown after brief incubation in papain followed by several washes in serum-free growth medium. The process of mechanical dissociation of each brain in a 5 ul drop of media on a coverslip is illustrated. The axons and dendrites of the post-mitotic neurons are sheered off near the soma during dissociation but the neurons begin to regenerate processes within a few hours of plating. Images show live cultures at 2 days. Neurons continue to elaborate processes during the first week in culture. Specific neuronal populations can be identified in culture using GAL4 lines to drive tissue specific expression of fluorescent markers such as GFP or RFP. Whole cell recordings have demonstrated the cultured neurons form functional, spontaneously active cholinergic and GABAergic synapses. A short video segment illustrates calcium dynamics in the cultured neurons using Fura-2 as a calcium indicator dye to monitor spontaneous calcium transients and nicotine evoked calcium responses in a dish of cultured neurons. These pupal brain cultures are a useful model system in which genetic and pharmacological tools can be used to identify intrinsic and extrinsic factors that influence formation and function of central synapses.  相似文献   

4.
To study neuronal networks in terms of their function in behavior, we must analyze how neurons operate when each behavioral pattern is generated. Thus, simultaneous recordings of neuronal activity and behavior are essential to correlate brain activity to behavior. For such behavioral analyses, the fruit fly, Drosophila melanogaster, allows us to incorporate genetically encoded calcium indicators such as GCaMP1, to monitor neuronal activity, and to use sophisticated genetic manipulations for optogenetic or thermogenetic techniques to specifically activate identified neurons2-5. Use of a thermogenetic technique has led us to find critical neurons for feeding behavior (Flood et al., under revision). As a main part of feeding behavior, a Drosophila adult extends its proboscis for feeding6 (proboscis extension response; PER), responding to a sweet stimulus from sensory cells on its proboscis or tarsi. Combining the protocol for PER7 with a calcium imaging technique8 using GCaMP3.01, 9, I have established an experimental system, where we can monitor activity of neurons in the feeding center – the suboesophageal ganglion (SOG), simultaneously with behavioral observation of the proboscis. I have designed an apparatus ("Fly brain Live Imaging and Electrophysiology Stage": "FLIES") to accommodate a Drosophila adult, allowing its proboscis to freely move while its brain is exposed to the bath for Ca2+ imaging through a water immersion lens. The FLIES is also appropriate for many types of live experiments on fly brains such as electrophysiological recording or time lapse imaging of synaptic morphology. Because the results from live imaging can be directly correlated with the simultaneous PER behavior, this methodology can provide an excellent experimental system to study information processing of neuronal networks, and how this cellular activity is coupled to plastic processes and memory.  相似文献   

5.
Wu JS  Luo L 《Nature protocols》2006,1(4):2110-2115
This protocol describes a basic method for dissection and immunofluorescence staining of the Drosophila brain at various developmental stages. The Drosophila brain has become increasingly useful for studies of neuronal wiring and morphogenesis in combination with techniques such as the 'mosaic analysis with a repressible cell marker' (MARCM) system, where single neurons can be followed in live and fixed tissues for high-resolution analysis of wild-type or genetically manipulated cells. Such high-resolution anatomical study of the brain is also important in characterizing the organization of neural circuits using genetic tools such as GAL4 enhancer trap lines, as Drosophila has been intensively used for studying the neural basis of behavior. Advantages of fluorescence immunostaining include compatibility with multicolor labeling and confocal or multiphoton imaging. This brain dissection and immunofluorescence staining protocol requires approximately 2 to 6 d to complete.  相似文献   

6.
Kelsch W  Stolfi A  Lois C 《PloS one》2012,7(6):e38593
The ability to label, visualize, and manipulate subsets of neurons is critical for elucidating the structure and function of individual cell types in the brain. Enhancer trapping has proved extremely useful for the genetic manipulation of selective cell types in Drosophila. We have developed an enhancer trap strategy in mammals by generating transgenic mice with lentiviral vectors carrying single-copy enhancer-detector probes encoding either the marker gene lacZ or Cre recombinase. This transgenic strategy allowed us to genetically identify a wide variety of neuronal subpopulations in distinct brain regions. Enhancer detection by lentiviral transgenesis could thus provide a complementary method for generating transgenic mouse libraries for the genetic labeling and manipulation of neuronal subsets.  相似文献   

7.
To determine the functions of genes in distinct tissues during the development of Drosophila, it is often desirable to have genetic tools for targeted gene expression in restricted subsets of cells. Here, we report the identification of the enhancer trap line OK371-Gal4, which is expressed in a defined subset of neurons from embryonic stage 15 to adulthood. In the ventral nerve chord, it is expressed almost exclusively in motoneurons and in the brain in a limited number of neuronal clusters. The OK371 enhancer trap element is inserted in the proximity of the annotated gene CG9887, which encodes a Drosophila vesicular glutamate transporter (DVGLUT). In situ hybridization experiments using antisense probes against the mRNAs of DVGLUT and neighboring genes confirm that OK371-Gal4 detects an enhancer of DVGLUT. DVGLUT-specific antibodies detect its expression in identifiable motoneurons, which are known to be glutamatergic in Drosophila. DVGLUT initially appears in small cytoplasmic punctae in the somata of these motoneurons. As development proceeds, DVGLUT-positive particles are transported along motor axons and become concentrated at neuromuscular junctions (NMJs), where they colocalize with the synaptic vesicle marker synaptotagmin. We find that the DVGLUT-specific antibodies are valuable tools for the identification of motoneurons and other glutamatergic neurons. In addition, the OK371-Gal4 line can be used for the targeted expression of any gene in these cells. Given that vesicular glutamate transporters are essential for the uptake of the neurotransmitter glutamate into synaptic vesicles these tools provide a means to test gene function in these functionally important neurons.  相似文献   

8.
Imaging intracellular calcium concentration via reporters that change their fluorescence properties upon binding of calcium, referred to as calcium imaging, has revolutionized our way to probe neuronal activity non-invasively. To reach neurons densely located deep in the tissue, optical sectioning at high rate of acquisition is necessary but difficult to achieve in a cost effective manner. Here we implement an accessible solution relying on HiLo microscopy to provide robust optical sectioning with a high frame rate in vivo. We show that large calcium signals can be recorded from dense neuronal populations at high acquisition rates. We quantify the optical sectioning capabilities and demonstrate the benefits of HiLo microscopy compared to wide-field microscopy for calcium imaging and 3D reconstruction. We apply HiLo microscopy to functional calcium imaging at 100 frames per second deep in biological tissues. This approach enables us to discriminate neuronal activity of motor neurons from different depths in the spinal cord of zebrafish embryos. We observe distinct time courses of calcium signals in somata and axons. We show that our method enables to remove large fluctuations of the background fluorescence. All together our setup can be implemented to provide efficient optical sectioning in vivo at low cost on a wide range of existing microscopes.  相似文献   

9.
Minimally invasive measurements of neuronal activity are essential for understanding how signal processing is performed by neuronal networks. While optical strategies for making such measurements hold great promise, optical sensors generally lack the speed and sensitivity necessary to record neuronal activity on a single-trial, single-neuron basis. Here we present additional biophysical characterization and practical improvements of a two-component optical voltage sensor (2cVoS), comprised of the neuronal tracer dye, DiO, and dipicrylamine (DiO/DPA). Using laser spot illumination we demonstrate that membrane potential-dependent fluorescence changes can be obtained in a wide variety of cell types within brain slices. We show a correlation between membrane labeling and the sensitivity of the magnitude of fluorescence signal, such that neurons with the brightest membrane labeling yield the largest ΔF/F values per action potential (AP; ∼40%). By substituting a blue-shifted donor for DiO we confirm that DiO/DPA works, at least in part, via a Förster resonance energy transfer (FRET) mechanism. We also describe a straightforward iontophoretic method for labeling multiple neurons with DiO and show that DiO/DPA is compatible with two-photon (2P) imaging. Finally, exploiting the high sensitivity of DiO/DPA, we demonstrate AP-induced fluorescence transients (fAPs) recorded from single spines of hippocampal pyramidal neurons and single-trial measurements of subthreshold synaptic inputs to granule cell dendrites. Our findings suggest that the 2cVoS, DiO/DPA, enables optical measurements of trial-to-trial voltage fluctuations with very high spatial and temporal resolution, properties well suited for monitoring electrical signals from multiple neurons within intact neuronal networks.  相似文献   

10.
Fluorescent protein-based sensors for detecting neuronal activity have been developed largely based on non-neuronal screening systems. However, the dynamics of neuronal state variables (e.g., voltage, calcium, etc.) are typically very rapid compared to those of non-excitable cells. We developed an electrical stimulation and fluorescence imaging platform based on dissociated rat primary neuronal cultures. We describe its use in testing genetically-encoded calcium indicators (GECIs). Efficient neuronal GECI expression was achieved using lentiviruses containing a neuronal-selective gene promoter. Action potentials (APs) and thus neuronal calcium levels were quantitatively controlled by electrical field stimulation, and fluorescence images were recorded. Images were segmented to extract fluorescence signals corresponding to individual GECI-expressing neurons, which improved sensitivity over full-field measurements. We demonstrate the superiority of screening GECIs in neurons compared with solution measurements. Neuronal screening was useful for efficient identification of variants with both improved response kinetics and high signal amplitudes. This platform can be used to screen many types of sensors with cellular resolution under realistic conditions where neuronal state variables are in relevant ranges with respect to timing and amplitude.  相似文献   

11.
12.
Perturbation in the Dystroglycan (Dg)-Dystrophin (Dys) complex results in muscular dystrophies and brain abnormalities in human. Here we report that Drosophila is an excellent genetically tractable model to study muscular dystrophies and neuronal abnormalities caused by defects in this complex. Using a fluorescence polarization assay, we show a high conservation in Dg-Dys interaction between human and Drosophila. Genetic and RNAi-induced perturbations of Dg and Dys in Drosophila cause cell polarity and muscular dystrophy phenotypes: decreased mobility, age-dependent muscle degeneration and defective photoreceptor path-finding. Dg and Dys are required in targeting glial cells and neurons for correct neuronal migration. Importantly, we now report that Dg interacts with insulin receptor and Nck/Dock SH2/SH3-adaptor molecule in photoreceptor path-finding. This is the first demonstration of a genetic interaction between Dg and InR.  相似文献   

13.
Due to its intermediate complexity and its sophisticated genetic tools, the larval brain of Drosophila is a useful experimental system to study the mechanisms that control the generation of cell diversity in the CNS. In order to gain insight into the neuronal and glial lineage specificity of neural progenitor cells during postembryonic brain development, we have carried an extensive mosaic analysis throughout larval brain development. In contrast to embryonic CNS development, we have found that most postembryonic neurons and glial cells of the optic lobe and central brain originate from segregated progenitors. Our analysis also provides relevant information about the origin and proliferation patterns of several postembryonic lineages such as the superficial glia and the medial-anterior Medulla neuropile glia. Additionally, we have studied the spatio-temporal relationship between gcm expression and gliogenesis. We found that gcm expression is restricted to the post-mitotic cells of a few neuronal and glial lineages and it is mostly absent from postembryonic progenitors. Thus, in contrast to its major gliogenic role in the embryo, the function of gcm during postembryonic brain development seems to have evolved to the specification and differentiation of certain neuronal and glial lineages.  相似文献   

14.
A convergence of advances in optical methods and a better understanding of the genetics of development promise to revolutionize the study of neuronal circuits and their links to behavior. One of the great challenges in systems neurobiology has been to monitor and perturb activity in populations of identified neurons in vivo. Recent work has begun to achieve this goal through a combination of modern imaging methods with genetic labeling and perturbation.  相似文献   

15.
Nitric oxide (NO) is a membrane-permeant signaling molecule which activates soluble guanylyl cyclase and leads to the formation of cyclic GMP (cGMP). The NO/cGMP signaling system is thought to play essential roles during the development of vertebrate and invertebrate animals. Here, we analyzed the cellular expression of this signaling pathway during the development of the Drosophila melanogaster nervous system. Using NADPH diaphorase histochemistry as a marker for NO synthase, we identified several neuronal and glial cell types as potential NO donor cells. To label NO-responsive target cells, we used the detection of cGMP by an immunocytochemical technique. Incubation of tissue in an NO donor induced cGMP immunoreactivity (cGMP-IR) in individual motoneurons, sensory neurons, and groups of interneurons of the brain and ventral nerve cord. A dynamic pattern of the cellular expression of NADPHd staining and cGMP-IR was observed during embryonic, larval, and prepupal phases. The expression of NADPH diaphorase and cGMP-IR in distinct neuronal populations of the larval central nervous system (CNS) indicates a role of NO in transcellular signaling within the CNS and as potential retrograde messenger across the neuromuscular junction. In addition, the presence of NADPH diaphorase-positive imaginal discs containing NO-responsive sensory neurons suggests that a transcellular NO/cGMP messenger system can operate between cells of epithelial and neuronal phenotype. The discrete cellular resolution of donor and NO-responsive target cells in identifiable cell types will facilitate the genetic, pharmacological, and physiological analysis of NO/cGMP signal transduction in the developing nervous system of Drosophila.  相似文献   

16.
The gonadotropin-releasing hormone (GnRH) neurons are the key output cells of a complex neuronal network controlling fertility in mammals. To examine calcium homeostasis in postnatal GnRH neurons, we generated a transgenic mouse line in which the genetically encodable calcium indicator ratiometric Pericam (rPericam) was targeted to the GnRH neurons. This mouse model enabled real-time imaging of calcium concentrations in GnRH neurons in the acute brain slice preparation. Investigations in GnRH-rPericam mice revealed that GnRH neurons exhibited spontaneous, long-duration (~8s) calcium transients. Dual electrical-calcium recordings revealed that the calcium transients were correlated perfectly with burst firing in GnRH neurons and that calcium transients in GnRH neurons regulated two calcium-activated potassium channels that, in turn, determined burst firing dynamics in these cells. Curiously, the occurrence of calcium transients in GnRH neurons across puberty or through the estrous cycle did not correlate well with the assumption that GnRH neuron burst firing was contributory to changing patterns of pulsatile GnRH release at these times. The GnRH-rPericam mouse was also valuable in determining differential mechanisms of GABA and glutamate control of calcium levels in GnRH neurons as well as effects of G-protein-coupled receptors for GnRH and kisspeptin. The simultaneous measurement of calcium levels in multiple GnRH neurons was hampered by variable rPericam fluorescence in different GnRH neurons. Nevertheless, in the multiple recordings that were achieved no evidence was found for synchronous calcium transients. Together, these observations show the great utility of transgenic targeting strategies for investigating the roles of calcium with specified neuronal cell types.  相似文献   

17.
Recent studies using functional optical imaging have revealed that cellular memory traces form in different areas of the insect brain after olfactory classical conditioning. These traces are revealed as increased calcium signals or synaptic release from defined neurons, and include a short-lived trace that forms immediately after conditioning in antennal lobe projection neurons, an early trace in dopaminergic neurons, and a medium-term trace in dorsal paired medial neurons. New molecular genetic tools have revealed that for normal behavioral memory performance, synaptic transmission from the mushroom body neurons is required only during retrieval, whereas synaptic transmission from dopaminergic neurons is required at the time of acquisition and synaptic transmission from dorsal paired medial neurons is required during the consolidation period. Such experimental results are helping to identify the types of neurons that participate in olfactory learning and when their participation is required. Olfactory learning often occurs alongside crossmodal interactions of sensory information from other modalities. Recent studies have revealed complex interactions between the olfactory and the visual senses that can occur during olfactory learning, including the facilitation of learning about subthreshold olfactory stimuli due to training with concurrent visual stimuli.  相似文献   

18.
N H Patel  P M Snow  C S Goodman 《Cell》1987,48(6):975-988
To identify candidates for neuronal recognition molecules in Drosophila, we used monoclonal antibodies to search for surface glycoproteins expressed on subsets of axon bundles (or fascicles) during development. Here we report on the characterization and cloning of fasciclin III, which is expressed on a subset of neurons and axon pathways in the Drosophila embryo. Fasciclin III is also expressed at other times and places including transient segmentally repeated patches in the neuroepithelium and segmentally repeated stripes in the body epidermis. Antisera generated against each of four highly related forms of the protein were used for cDNA expression cloning to identify a single gene, which was confirmed to encode fasciclin III by tissue in situ hybridization and genetic deficiency analysis.  相似文献   

19.
The structure and function of the nervous system are intricately connected. To investigate their relationship it is essential to image neuronal structure and function simultaneously with high spatio-temporal resolution. For this purpose, we describe here a two-step strategy. First, to visualize neurons and their entire dendritic arborization in neuronal tissue, we use ballistic delivery or single-cell electroporation of a fluorescent calcium indicator and a red fluorescent dye. Second, dual wavelength wide-field fluorescence microscopy or confocal microscopy enables imaging structural plasticity of dendrites (including filopodia and spines) and calcium dynamics together. We routinely apply this strategy to developing neurons in live tissue, but mature neurons can also be loaded and imaged as described. For labeling cells and setting up imaging equipment, approximately 2 h are required.  相似文献   

20.
The wiring patterns among various types of neurons via specific synaptic connections are the basis of functional logic employed by the brain for information processing. This study introduces a powerful method of analyzing the neuronal connectivity patterns by delivering a tracer selectively to specific types of neurons while simultaneously transsynaptically labeling their target neurons. We developed a novel genetic approach introducing cDNA for a plant lectin, wheat germ agglutinin (WGA), as a transgene under the control of specific promoter elements. Using this method, we demonstrate three examples of visualization of specific transsynaptic neural pathways: the mouse cerebellar efferent pathways, the mouse olfactory pathways, and the Drosophila visual pathways. This strategy should greatly facilitate studies on the anatomical and functional organization of the developing and mature nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号