首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ali MF  Knoop FC  Vaudry H  Conlon JM 《Peptides》2003,24(7):955-961
Rana esculenta is a hybridogenetic hybrid between Rana ridibunda and Rana lessonae and so is best considered as a complex of interbreeding species rather than a discrete single species. In this study, antimicrobial peptides were isolated from a pooled extract of the skins of specimens of the R. esculenta complex collected in the wild. In addition to several peptides belonging to the brevinin and esculentin families that have been previously isolated from skin secretions of a single specimen of R. esculenta, three newly described members of the brevinin-2 family (brevinin-2Ei, brevinin-2Ej, and brevinin-2Ek) and one member of the temporin family (temporin-1Ec) were purified and characterized. In addition, three structurally related peptides with no sequence similarity with antimicrobial peptides isolated from other species of ranid frogs, that potently and selectively inhibit the growth of the Gram-positive bacterium Escherichia coli (minimal inhibitory concentration (MIC<5 microM)), were identified. These peptides show limited amino acid sequence similarity to the homologous exon gene products that encode the N-terminal flanking peptides of preprocaerulein, preproxenopsin, and preprolevitide and so have been termed caerulein precursor-related fragments (CPRF-Ea, CPRF-Eb, and CPRF-Ec). The data suggest that there may be considerable polymorphism among specimens from different populations of the R. esculenta complex. It is proposed that the distribution and amino acid sequences of skin antimicrobial peptides may be useful markers for taxonomic classification of particular sub-populations and for an understanding of phylogenetic interrelationships.  相似文献   

2.
In this study it has been proved by PAGE of serum proteins that all the three members of the Rana esculenta complex occur in the Kis-Balaton Nature Reserve (Hungary). On the basis of the LDH isoenzyme pattern which is characteristic in green frogs we could distinguish all three variations of R. ridibunda and R. lessonae and one type of R. esculenta. The mobility of serum albumins on SDS-PAGE implies that the R. esculenta comes from hybridization of the two other species. The PAGE methods provide a reliable basis for the rapid taxonomic identification of both adults and immature speciments of the three forms of frogs.  相似文献   

3.
In behavioral experiments, toad tadpoles-recipients chose between two parts of test aquarium with chemical signals of donor tadpoles of the same or different (Rana esculenta) species. The youngest studied tadpoles (43-45 stages) preferred the part of the aquarium with chemical cues from sibs as compared to non-sibs. No reliable difference in "non-sibs: water" system was observed. In "tadpoles of the same species: tadpoles of the other species" system, recipient tadpoles chose "their" part of the aquarium. Hence, toad tadpoles revealed a trend to aggregate with their sibs and avoid R. esculenta toads in the presence of certain chemical cues and in the absence of visual signals.  相似文献   

4.
In central Europe, the hybridogenetic waterfrog Rana esculenta, a hybrid between Rana ridibunda and Rana lessonae, lives in sympatry with one of its parental species, the poolfrog Rana lessonae. As R. esculenta has to backcross constantly with R. lessonae in order to produce viable offspring, this coexistence is obligatory for R. esculenta. Since R. esculenta has a higher primary fitness than R. lessonae, a mechanism is required that prevents the hybrid from driving the parental species, and hence itself, to extinction. Here, we present an analytical model and a computer simulation that investigate whether assortative mating can operate as a such a control mechanism. Our results show that assortative mating is very effective in regulating coexistence in such a hybrid-host system. This is particularly true when choice is affected by the proportion of the two male types in the population. Furthermore, we could show that even if the species composition in a mixed hybrid-host population may be largely influenced by differences in life-history parameters, assortative mating still plays a very important role by stabilizing coexistence. Thus, mating behavior turns out to be more important for the populations dynamics of hybridogenetic waterfrog systems than previously assumed.  相似文献   

5.
Mitotic chromosomes of the European water frogs Rana ridibunda and Rana lessonae, the parental species of Rana esculenta, differ significantly in their centromeric regions: when C-banded or when made fluorescent, the centromeres of R. ridibunda (and of ridibunda chromosomes in R. esculenta) are visible as a conspicuous dark granule or as a conspicuous fluorescent spot; the centromeres of R. lessonae (and of the lessonae chromosomes in R. esculenta) are inconspicuous or not fluorescent. Lampbrush chromosomes of these three taxa are described in detail for the first time; those of R. ridibunda and R. lessonae differ significantly in morphostructural characters such as conspicuousness of centromeres and number, form, and location of giant loops as well as in chiasma frequency. Chromosomes of the two parental species can thus be distinguished when present in lampbrush complements of hybrids. Reproduction in both sexes of natural R. esculenta lineages is hemiclonal: only the unrecombined genome of one parental species, usually R. ridibunda, is transmitted to haploid gametes (hybridogenesis). In 18 hybrids from natural populations of Poland, somatic tissues had allodiploid complements with chromosomes from each parental species. In contrast, spermatocytes I of five males and oocytes I of seven of eight females (221 of 222 oocytes) were autodiploid and contained only R. ridibunda chromosomes that formed n bivalents. These 12 hybrids thus were hybridogenetic. A single female hybrid had oocytes I (33 of 34) with genomes of both parental species; they showed various disturbances including tetraploidy, reduced number of chiasmata, and incomplete synapsis resulting in univalents. This individual thus was not hybridogenetic. The irregular lampbrush patterns indicate that such hybrids will have severely reduced fertility and most of their successful gametes will result in allotriploid progeny.  相似文献   

6.
In Anurans, the specific mate recognition system (SMRS), which contributes to prezygotic isolation, is mainly based on morphological and call features. This is why such criteria are used by zoologists for taxonomic identification. In hybridogenetic water frogs (Rana ridibunda, R. lessonae, R. perezi, R. kl. grafi and R. kl. esculenta), hybridization opens up the question of the efficiency of these criteria for taxon identification and of the specific recognition system in this context. Variation in both morphological and call features revealed both significant mean differences among taxa but also large overlapping among individuals belonging to different taxa. Thus, using call or morphometrical features in order to identify water frogs may be hazardous. Moreover, species differ poorly in their specific mate recognition system, facilitating hybridization events, and therefore suggesting that postzygotic mechanisms may be prevalent over prezygotic mechanisms.  相似文献   

7.
1. Clonally reproducing species are often assumed to lack sufficient genetic variability to evolve specific local adaptations to cope with environmental perturbation and competition from sexual species. Yet, many asexuals are extremely successful judged by abundance and wide range, suggesting high competitive abilities in resource exploitation.
2. In this study, food use and its effects on larval growth in a water frog system consisting of the two parental sexual species, Rana lessonae (Camerano 1882) and Rana ridibunda (Pallas 1771), and three different coexisting hemiclones of their hybrid, Rana esculenta (Linnaeus 1758) were investigated.
3. R. esculenta tadpoles spent 18·6% more time feeding than did tadpoles of either parental species, but feeding time was not affected by interspecific mixture.
4. R. esculenta tadpoles consumed 50·8% more food over the whole test period than did tadpoles of the two parental species.
5. R. esculenta tadpoles exhibited higher growth rates than did tadpoles of either parental species.
6. R. lessonae tadpoles had the highest and R . ridibunda tadpoles the lowest growth efficiencies with the R. esculenta tadpoles ranging between the two parentals.
7. The results obtained indicate that hemiclonal hybridogenetic R . esculenta tadpoles display significant phenotypic variation among coexisting hemiclones as well as out-perform tadpoles of the parental sexual species R. lessonae and R . ridibunda. The primary mechanism for success of the hybrid tadpoles is probably behavioural, through increased feeding time and food consumption, and not physiological via growth efficiency.  相似文献   

8.
Survival and some physiological responses to freezing were investigated in three European water frogs (Rana lessonae, Rana ridibunda, and their hybridogen Rana esculenta). The three species exhibited different survival times during freezing (from 10 h for R. lessonae to 20 h for R. ridibunda). The time courses of percent water frozen were similar; however, because of the huge differences in body mass among species (from 10 g for Rana lessonae to nearly 100 g for Rana ridibunda), the ice mass accumulation rate varied markedly (from 0.75 +/- 0.12 to 1.43 +/- 0.11 g ice/h, respectively) and was lowest in the terrestrial hibernator Rana lessonae. The hybrid Rana esculenta exhibited an intermediate response between the two parental species; furthermore, within-species correlation existed between body mass and ice mass accumulation rates, suggesting the occurrence of subpopulations in this species (0.84 +/- 0.08 g ice/h for small R. esculenta and 1.78 +/- 0.09 g ice/h for large ones). Biochemical analyses showed accumulation of blood glucose and lactate, liver glucose (originating from glycogen), and liver alanine in Rana lessonae and Rana esculenta but not in Rana ridibunda in response to freezing. The variation of freeze tolerance between these three closely related species could bring understanding to the physiological processes involved in the evolution of freeze tolerance in vertebrates.  相似文献   

9.
The skins of frogs of the genus Rana synthesize a complex array of antimicrobial peptides that may be grouped into eight families on the basis of structural similarity. A total of 24 peptides with differential growth-inhibitory activity towards the Gram-positive bacterium Staphylococcus aureus, the Gram-negative bacterium Escherichia coli and the yeast Candida albicans were isolated from extracts of the skins of three closely related North American frogs, Rana luteiventris (spotted frog), Rana berlandieri (Rio Grande leopard frog) and Rana pipiens (Northern leopard frog). Structural characterization of the antimicrobial peptides demonstrated that they belonged to four of the known families: the brevinin-1 family, first identified in skin of the Asian frog Rana porosa brevipoda; the esculentin-2 family, first identified in the European frog Rana esculenta; the ranatuerin-2 family, first identified in the North American bullfrog Rana catesbeiana; and the temporin family, first identified in the European frog Rana temporaria. Peptides belonging to the brevinin-2, ranalexin, esculentin-1 and ranatuerin-1 families were not identified in the extracts. Despite the close phylogenetic relationship between the various species of Ranid frogs, the distribution and amino-acid sequences of the antimicrobial peptides produced by each species are highly variable and species-specific, suggesting that they may be valuable in taxonomic classification and molecular phylogenetic analysis.  相似文献   

10.
Interspecies transfer of mitochondrial (mt) DNA is a common phenomenon in plants, invertebrates and vertebrates, normally linked with hybridization of closely related species in zones of sympatry or parapatry. In central Europe, in an area north of 48 degrees N latitude and between 8 degrees and 22 degrees E longitude, western Palaearctic water frogs show massive unidirectional introgression of mtDNA: 33.7% of 407 Rana ridibunda possessed mtDNA specific for Rana lessonae. By contrast, no R. lessonae with R. ridibunda mtDNA was observed. That R. ridibunda with introgressed mitochondrial genomes were found exclusively within the range of the hybrid Rana esculenta and that most hybrids had lessonae mtDNA (90.4% of 335 individuals investigated) is evidence that R. esculenta serves as a vehicle for transfer of lessonae mtDNA into R. ridibunda. Such introgression has occurred several times independently. The abundance and wide distribution of individuals with introgressed mitochondrial genomes show that R. lessonae mt genomes work successfully in a R. ridibunda chromosomal background despite their high sequence divergence from R. ridibunda mtDNAs (14.2-15.2% in the ND2/ND3 genes). Greater effectiveness of enzymes encoded by R. lessonae mtDNA may be advantageous to individuals of R. ridibunda and probably R. esculenta in the northern parts of their ranges.  相似文献   

11.
mtDNA of the hybridogenetic hybrid frog Rana esculenta from Switzerland, Austria, and Poland was compared to mtDNA of the parental species R. ridibunda and R. lessonae using electrophoretic analysis of restriction enzyme fragments. Two mtDNA phenotypes, with 3.4% sequence divergence, are present in R. lessonae: type C is found in Poland, and type D is found in Switzerland. Rana ridibunda from Poland has either of two mtDNA phenotypes: type A is the typical ridibunda mtDNA, and type B is a lessonae mitochondrial genome, introgressed into R. ridibunda, that differs from type C mtDNA of R. lessonae by only 0.3%. Each of the three lessonae genomes differs from A, the typical ridibunda mtDNA, by approximately 8%. All four types of mtDNA (A and B of R. ridibunda, C and D of R. lessonae) are found in R. esculenta. Of 62 R. esculenta from Poland, 58 had type C, three had type A, and one had type B mtDNA. All nine R. esculenta from Switzerland had type D mtDNA. All three R. esculenta from Austria, from a population in which males of R. esculenta are rare, had ridibunda mtDNA, two having type B and one having type A. Both field observations and studies of mating preference indicate that the primary hybridizations that produce R. esculenta are between R. ridibunda females and R. lessonae males; thereafter, R. esculenta lineages are usually maintained by matings of R. esculenta females with R. lessonae males. The presence of ridibunda mtDNA in the three R. esculenta sampled from Austria, its occasional presence in R. esculenta populations in Poland, and its absence from R. esculenta in Switzerland support both the direction of the original hybridization and the rarity of formation of new R. esculenta lineages. The preponderance of R. esculenta individuals with lessonae mtDNA in our samples from central Europe suggests that most lineages have gone through at least one mating between an R. lessonae female and an R. esculenta male. This reveals a greater reproductive role for R. esculenta males than their partial sterility and infrequent matings would suggest.   相似文献   

12.
Cytological aspects of hemiclonal (meroclonal) inheritance in diploid and triploid males of the hybridogenetic frog Rana esculenta (Rana ridibunda x Rana lessonae) have been studied by DNA flow cytometry. The fact that the R. ridibunda genome contains 16% more DNA than the R. lessonae genome provides the ability to discern cells containing genomes of any species from the water-frog complex under study. Data are presented showing that elimination of the R. ridibunda genome occurs in hybridogenetic males from certain populations. In triploid males, the cytogenetic mechanism of hemiclonal inheritance is simpler than in diploids: after the elimination of a genome (always the genome in the minority in the triploid set; "homogenizing elimination"), no compensatory duplication of the remaining genetic material is necessary, as it is in diploids. The process of elimination can be visualized in triploid males by using DNA flow cytometry to identify cells in the special phase of the spermatogonial cell cycle that we termed the E phase.  相似文献   

13.
A new taxon, Rhabdias esculentarum n. sp., is described based on DNA sequence analysis at multiple loci (i.e. mtDNA cox-1, 12S rRNA, ITS-1 and partial ITS-2 regions of the nuclear rDNA) and morphometric analysis carried out on specimens collected from the green frogs of the Rana esculenta species complex in Italy (i.e. R. lessonae Camerano and R. esculenta Linnaeus, identified genetically by diagnostic allozyme loci). Rhabdias esculentarum n. sp. was differentiated genetically, at both mitochondrial and nuclear levels, from Rh. bufonis (Schrank, 1788) (sensu Hartwich, 1972) and Rh. sphaerocephala Goodey, 1924 recovered from the toad Bufo bufo Linnaeus collected sympatrically with the specimens of Rana lessonae and R. esculenta examined in the present study. Moreover, the new taxon proved to be different from the other species of Rhabdias from anurans, which had previously been sequenced using the same genes and deposited in GeneBank. Phylogenetic analyses (MP and ML) inferred from mitochondrial (mtDNA cox-1 and 12S ribosomal RNA) and nuclear (ITS-1 and ITS-2 of the rDNA regions) sequences datasets were congruent in depicting Rh. esculentarum n. sp. as forming a highly supported clade distinct from the sympatric species Rh. bufonis, as well as from Rh. sphaerocephala, characterised on the basis of the same loci. Morphometric analysis and the differential diagnosis of genetically characterised specimens of the new species have revealed differences in several features in comparison with the type-species, Rh. bufonis. Material of the latter species included voucher specimens from Germany deposited by Hartwich (1972) and other specimens collected from B. bufo in Italy. Among the diagnostic characters, the particular cup-shaped buccal capsule characterising Rh. esculentarum is clearly different from the tear-shaped buccal capsule observed in material of R. bufonis obtained from Berlin Museum and collected in the same geographical area as the green frogs under study. Rh. esculentarum was also found to differ in some measurements and allometric characters from Rh. bufonis (sensu Moravec et al., 1997). The data so far collected appear to indicate a host-preference of Rh. esculentarum for Rana lessonae and R. esculenta, which belong to the R. esculenta hybridogenetic species complex in Italy.  相似文献   

14.
The variable microsatellite repeat BM224 has been discovered in the genomes of eight species of green frogs (Rana ridibunda, R. cf bedriagae, R. cretensis, R. esculenta, R. lessonae, R. shquiperica, R. saharica, R. nigromaculata). Earlier, this repeat had been observed in members of the genus Bufo. In this paper, a possibility of usage of this genetic marker for species identification is discussed.  相似文献   

15.
The highly repetitive Rana/Pol III family consists of short, tandemly arrayed sequences, scattered throughout the genomes of Palearctic green water frogs. The repeat unit is about 250 bp in length and is a composite element: it contains a SINE-like retroposon with a tRNA structure, flanked by two short direct repeats, and the occurrence of two internal repeats gives evidence that an additional transposition event may have inserted a segment within the already transposed element. Rana/Pol III family is present in the genomes of Rana lessonae, R. ridibunda, and their hybrid form R. esculenta, as well as in R. shqiperica. R. epeirotica, R. cretensis, and the Italian taxon. These sequences are also present in the Iberian R. perezi, although less abundant, but appear to be lacking in the north African species R. saharica. The distribution of Rana/Pol III in the genomes of Palearctic green frogs is in agreement with the phyletic history based on genetic data. The evolutionary pattern proposed for the genus Rana enables us to suppose that the hybridogenetic mechanism is one of the factors accounting for the possible horizontal transfer of Rana/Pol III elements from the central-north Europe species to R. perezi.  相似文献   

16.
17.
The aim of this study was to demonstrate in the adrenocortical and renal tissues of two species of frog, Rana italica and Rana esculenta, the presence and distribution of five neuropeptides: atrial natriuretic peptide (ANP), Leu-enkephalin (Leu-ENK), neuropeptide Y (NPY), substance P (SP) and vasoactive intestinal peptide (VIP).In anurans, the adrenal medulla is the site for the synthesis, storage and secretion of not only catecholamines but also various peptides. These peptides should not be regarded only as neurotransmitters or modulators for the secretion of catecholamines, but also as hormonal substances that induce systemic effects.All the peptides studied (ANP, Leu-ENK, NPY, SP and VIP) are present in both organs. However, different patterns of expression were observed for some of the peptides in two frogs.Immunopositivity to ANP was found in small clusters of chromaffin cells in both frogs whereas a clear strong positivity was present only in Rana esculenta kidney. Large clusters of chromaffin cells were immunoreactive to Leu-ENK in Rana italica but there were approximately 25% fewer compared to the positive cells present in Rana esculenta. Epithelial cells of renal tubules showed strong immunopositivity to Leu-ENK in Rana esculenta but not in Rana italica. A large number of adrenal cells (70–80%) were immunoreactive to NPY in Rana italica, while in Rana esculenta this peptide was localized in small clusters of chromaffin cells. Both frogs showed many NPY-positive cells in kidney. Many chromaffin cells were found positive to SP and VIP. A strong positivity was also observed in kidney in both frogs. These observations suggest a possible role of these peptides in the control of the physiological functions of adrenal glands and kidney of the two species of frogs studied.  相似文献   

18.
19.
20.
The nucleotide sequence of a part of the mitochondrial 12S rRNA gene of eight western Palearctic water frog species was analysed. The results are consistent with the species status of Rana bedriagae, Rana bergeri, Rana epeirotica, Rana lessonae, Rana perezi, Rana ridibunda, Rana saharica and Rana shqiperica . The obtained DNA data suggest that lake frogs from Greece and Yugoslavia on the one hand and lake frogs from Georgia, Uzbekistan and Turkmenistan on the other hand represent two distinct species. However, it is not yet clear whether lake frogs from Georgia, Uzbekistan and Turkmenistan belong to R. ridibunda or represent a new species. The very high similarity between the analysed 12S rDNA segments of German R. ridibunda and R. lessonae confirm the finding that mtDNA of R. lessonae was transmitted into the mitochondrial gene pool of R. ridibunda probably as a result of backcrosses with the hybridogenetic hybrid R. kl. esculenta . The results of parsimony analyses speak in favour of very close phylogenetic relations between R. perezi and R. saharica ; with a high probability these species represent an adelphotaxon. Furthermore, the clades ( R. lessonae + R. shqiperica + R. bergeri ) and ( R. ridibunda + R. bedriagae ) are considered to be sister groups. According to the mt 12S rDNA data R. epeirotica seems to be more closely related to the supraspecific taxon ( R. ridibunda + R. bedriagae ) than to ( R. lessonae + R. shqiperica + R. bergeri ). Thus, it can be excluded that R. shqiperica and R. epeirotica represent sister species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号