首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrolysis of nucleic acids is of fundamental importance in biological sciences. Kinetic and theoretical studies on different substrates wherein the phosphodiester bond combined with alkyl or aryl groups and sugar moiety have been the focus of attention in recent literature. The present work focuses on understanding the mechanism and energetics of alkali metal (Li, Na, and K) catalyzed hydrolysis of phosphodiester bond in modeled substrates including Thymidylyl (3′-O, 5′-S) thymidine phosphodiester (Tp-ST) (1), 3′-Thymidylyl (1-trifluoroethyl) phosphodiester (Tp-OCH2CF3) (2), 3′-Thymidylyl (o-cholorophenyl) phosphodiester (Tp-OPh(o-Cl)) (3) and 3′-Thymidylyl(p-nitrophenyl) phosphodiester (Tp-OPh(p-NO2)) (4) employing density functional theory. Theoretical calculations reveal that the reaction follows a single-step (ANDN) mechanism where nucleophile attack and leaving group departure take place simultaneously. Activation barrier for potassium catalyzed Tp-ST hydrolysis (12.0 kcal mol?1) has been nearly twice as large compared to that for hydrolysis incorporating lithium or sodium. Effect of solvent (water) on activation energies has further been analyzed by adding a water molecule to each metal ion of the substrate. It has been shown that activation barrier of phosphodiester hydrolysis correlates well with basicity of leaving group.
Figure
Phosphodiester bond in Tp‐ST (1), Tp‐OCH2CF3 (2) Tp‐OPh(o‐Cl) (3) and Tp‐OPh(p‐NO2) (4)  相似文献   

2.
Abstract

A series of 3′-N-substituted 3′-amino-3′-deoxythymidine derivatives with alkyl, alkenyl and alkylaryl substituents was synthesized by two methods. The first method involved the reaction of 1-(2,3-dideoxy-3-0-mesyl-5-0-trityl-β-D-threo-pentofuranosyl)thymine with an appropriate amine. In the second method, 3′-amino-5′-0-trityl-3′-deoxy-thymidine served as a synthetic precursor which was reacted with an appropiate aldehyde or ketone followed by sodium borohydride reduction. An improved synthesis of 3′-amino-3′-deoxythymidine from 3′ -azido-5′-0-trityl-3′-deoxythymidine using sodium borohydride was also described.  相似文献   

3.
Abstract

2′- and 3′-O-azidomethyl derivatives of ribonucleosides were obtained by splitting the corresponding methylthiomethyl derivatives of ribonucleosides with bromine or SO2Cl2 followed by lithium azide treatment.  相似文献   

4.
Abstract

Phosphorylation of 2′-0-acetyl-3′-trifluoroacetamido-3′-deoxy-N2-palmitoylguanosine with N-morpholino-O, O-bis(1-benzotriazolyl)phos-phate gives a 5′-phosphotriester. Removal of the benzotriazolyl group and addition of pyrophosphoric acid gave, after deblocking all protecting groups, GTP(3′NH2).  相似文献   

5.
Abstract

It has generally proven difficult to synthesize ribonucleosides with sugar modifications at the 3′ position. We now present a practical route for the synthesis of ribonucleosides with a 3′ fluorine substituent. Nucleosides with the xylo configuration were prepared by sugar-base condensation. Tritylation of the unprotected nucleosides gave a mixture of 2′,5′ and 3′,5′ bistritylated nucleosides which were difficult to characterize. Therefore the necessary precursors were synthesized in a step-wise fashion, starting with selective deprotection of the 2′-acyl group, followed by tritylation. This gave the 2′,5′-tritylated xylonucleosides in good yield. Reaction with diethylaminosulfur trifluoride and deprotection with 80 % acetic acid provided the 3′-fluoro-3′-deoxyribonucleosides 1, 2 and 4. The cytidine derivative was synthesized from 1 by reaction with trifluoromethanesulfonic anhydride followed by ammonia. Treatment of 4 with adenosine deaminase yielded 5.  相似文献   

6.
The protein environment of mRNA 3′ of the A-site codon (the decoding site) in the human 80S ribosome was studied using a set of oligoribonucleotide derivatives bearing a UUU triplet at the 5′-end and a perfluoroarylazide group at one of the nucleotide residues 3′ of this triplet. Analogues of mRNA were phased into the ribosome using binding at the tRNAPhe P-site, which recognizes the UUU codon. Mild UV irradiation of ribosome complexes with tRNAPhe and mRNA analogues resulted in the predominant crosslinking of the analogues with the 40S subunit components, mainly with proteins and, to a lesser extent, with rRNA. Among the 40S subunit ribosomal proteins, the S3 protein was the main target for modification in all cases. In addition, minor crosslinking with the S2 protein was observed. The crosslinking with the S3 and S2 proteins occurred both in ternary complexes and in the absence of tRNA. Within ternary complexes, crosslinking with S15 protein was also found, its efficiency considerably falling when the modified nucleotide was moved from positions +5 to +12 relative to the first codon nucleotide in the P-site. In some cases, crosslinking with the S30 protein was observed; it was most efficient for the derivative containing a photoreactive group at the +7 adenosine residue. The results indicate that the S3 protein in the human ribosome plays a key role in the formation of the mRNA binding site 3′ of the codon in the decoding site.  相似文献   

7.
Cyclic GMP-AMPs (cGAMPs) are new members of the cyclic dinucleotide family of second messenger signaling molecules identified in both bacteria and mammalian cells. A recent study by Gao et al. published in Cell Research has identified and characterized three 3′3′-cGAMP-specific phosphodiesterases (termed as V-cGAP1/2/3) in V. cholerae, thereby providing mechanistic insights into the function of these enzymes that degrade cGAMPs.Despite their indispensable roles in the composition of DNA and RNA, as well as serving as energy sources, nucleotides are also well known as crucial signaling molecules in all domains of life. Cyclic dinucleotides (CDNs) represent an important and growing family of second messengers, which have been previously recognized as key modulators governing a variety of cellular activities in bacteria, and more recently, in mammalian cells. c-di-GMP and c-di-AMP, the first two members of the CDN family, have been implicated in central bacterial processes, and likely act as universal bacterial secondary messengers1,2. The latest addition to the bacterial CDN family is 3′3′-cGAMP, a hybrid molecule that is synthesized from ATP and GTP by DncV (a cyclase from V. cholerae) and shown to promote intestinal colonization of V. cholerae by downregulating chemotaxis3. Predicted homologs of DncV are present in many other bacterial species3, indicating that 3′3′-cGAMP may also regulate a wide range of cellular functions, similar to c-di-GMP and c-di-AMP. The research on CDNs as second messengers reached new heights following the recent identification of 2′3′-cGAMP, a noncanonical CDN in mammalian cells containing mixed 2′,5′ (at GpA step) and 3′,5′ (at ApG step) linkages, which is synthesized by cGAMP synthase (cGAS) in response to the presence of DNA in the cytosol4,5,6. A remarkable set of new discoveries have revealed that all the CDNs described above are able to bind and activate STING, the central adaptor in the cytosolic DNA sensing pathway, thereby promoting the innate immune response in mammalian cells by inducing the expression of Type I interferon (IFN)7,8,9.Given their critical roles in a variety of important cellular processes, the cellular levels of CDNs have to be tightly controlled by the coordinated action of counteracting cyclases and degradation enzymes. To date, several phosphodiesterases (PDEs) have been found to hydrolyze c-di-GMP (EAL or HD-GYP domain-containing enzymes)1 and c-di-AMP (DHH-DHHA or HD domain-containing enzymes)2,10 (Figure 1). In addition, recent research reported that ENPP1 (ecto-nucleotide pyrophosphatase/phosphodiesterase) is the dominant 2′3′-cGAMP hydrolyzing enzyme in mammalian cells11 (Figure 1). A new study by Gao et al.12 has now identified the first three 3′3′-cGAMP-specific PDEs in V. cholerae and provided detailed insights into their enzymatic mechanisms.Open in a separate windowFigure 1Schematic representation of degradation enzymes identified for different cyclic dinucleotides and the related hydrolysis products. The various protein domains are highlighted by different shapes and colors. Note that the newly identified V-cGAPs belong to the HD-GYP domain-containing PDEs.There are a total of 36 potential PDE genes (containing EAL, HD-GYP or DHH domains) in the V. cholerae genome. To search for 3′3′-cGAMP-specific PDE(s), Gao et al.12 established an efficient and sensitive eukaryotic screening system by taking advantage of the ability of 3′3′-cGAMP to activate STING and induce type I IFN expression in mammalian cells. By overexpressing the 3′3′-cGAMP synthetase DncV together with the 36 potential PDEs in 293 cells, the authors could monitor IFN-β promoter activation to identify the PDE(s) that could degrade 3′3′-cGAMP. To exclude false-positives, Gao et al. further purified the PDEs that potentially target 3′3′-cGAMP based on the initial screening, and incubated these enzymes with chemically synthesized 3′3′-cGAMP. The treated 3′3′-cGAMP molecules were further assayed by either adding to PFO-permeabilized THP-1 cells to examine IRF3 phosphorylation levels or through loading on HPLC to monitor the generation of new products. As a result of the screening and validation, the authors successfully identified three HD-GYP domain-containing proteins that could degrade 3′3′-cGAMP, named VCA0681, VCA0210 and VCA0931 (designated as V-cGAP1, 2 and 3, respectively).To determine the substrate specificity of V-cGAPs, different cGAMP linkage isomers (3′3′-, 3′2′-, 2′3′-, and 2′2′-cGAMPs) were incubated with the purified V-cGAPs. The results of both IRF3 phosphorylation in THP-1 cells and HPLC assays clearly indicated that V-cGAPs only degrade 3′3′-cGAMP, but not other cGAMP linkage isomers. The 3′3′-cGAMP PDE activity of V-cGAPs was further confirmed by dosage- and time-dependent enzymatic assays. By using mutant proteins, the authors also confirmed that both the HD and GYP motifs within V-cGAPs are critical for PDE activity.Combining detailed HPLC analysis, mass spectrometry and enzymatic treatment, Gao et al. definitively established that 3′3′-cGAMP is first hydrolyzed by all three V-cGAPs to generate linear 5′-pApG, which is further hydrolyzed into 5′-ApG only by V-cGAP1. These results show that V-cGAP2 and V-cGAP3 have only PDE activity, while V-cGAP1 has both PDE and 5′-nucleotidase activities. The authors also found that V-cGAP1 has a much higher activity for linearization of 3′3′-cGAMP to 5′-pApG than V-cGAP2 and 3, with the later two V-cGAPs exhibiting similar kinetics of degradation.The cellular level of 3′3′-cGAMP has to be tightly regulated by a combination of counteracting synthesis and degradation enzymes. Since the expression level of DncV was found to be inducible by outside signals to enhance intestinal colonization and infectivity, it is very likely that the expression level of V-cGAPs will also be regulated by 3′3′-cGAMP production. Indeed, the authors proved that V-cGAP expression is greatly and readily enhanced after arabinose-induced DncV expression in a ΔdncV mutant V. cholerae strain, at both mRNA (by qRT-PCR) and protein (by immunoblot analysis) levels. To confirm the in vivo function of V-cGAPs, the authors performed both “chemotactic” and “infant mouse colonization competition” assays by using V-cGAP1/2/3 single-, double-, or triple-deletion V. cholerae strains. All the in vivo data clearly established that V-cGAPs counteract DncV function and exert a crucial role in regulating bacterial infectivity.The large amount of insightful data presented by Gao et al. has elucidated detailed information regarding the identification and characterization of 3′3′-cGAMP-specific phosphodiesterases, thereby providing valuable insights into our understanding of the regulatory mechanisms of cGAMP signaling in bacteria. Clearly, further structural work will be necessary to understand the intermolecular interactions between 3′3′-cGAMP and V-cGAPs, and provide insights into the mechanism by which V-cGAPs preferentially attack the phosphodiester bond at the GpA step.  相似文献   

8.
The methods of synthesis of the derivatives of nucleoside analogues esterified with various aliphatic, aromatic, and heteroaromatic acids and the construction from them of molecular transport systems that involve lipids, carbohydrates, peptides, and amino acids are discussed. The characteristics of the biological activity of a number of such systems are described.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 4, 2005, pp. 339–356.Original Russian Text Copyright © 2005 by Berezovskaya, Chudinov.  相似文献   

9.
Abstract

A series of 3′-C-cyano-3′-deoxy and 3′-C-cyano-2′,3′-dideoxy-nucleoside analogues of thymidine, uridine, cytidine and adenosine have been prepared. Their antiviral activity was assessed in various assay systems and while none of the compounas proved specifically active against human immunodeficiency virus, some compounds had marked activity against other viruses.  相似文献   

10.
Footprinting of ribosomal protein S1 on the 49-nucleotide 3′ terminal cloacin DF13 fragment of 16 S rRNA at physiological ionic strength, pH and temperature yielded no detectable protection of any nucleotides from subsequent attack by the single strand specific nuclease S1, even at large excesses of ribosomal protein S1.  相似文献   

11.
A series of N1,N3-dialkyl-N1,N3-di(alkylcarbonothioyl) malonohydrazides have been designed and synthesized as anticancer agents by targeting oxidative stress and Hsp70 induction. Structure–activity relationship (SAR) studies lead to the discovery of STA-4783 (elesclomol), a novel small molecule that has been evaluated in a number of clinical trials as an anticancer agent in combination with Taxol.  相似文献   

12.
Abstract

Several β-L-3′-substituted-3′-deoxythymidine were stereospecifically synthesized. None of these analogs inhibited HIV-1 nor HBV replication in vitro suggesting that these β-L-pyrimidine derivatives may not be efficiently phosphorylated inside the cells.  相似文献   

13.
Abstract

- The 4-amino-1-(2.3-dideoxy-β-D-glycero-pent-2-enofurano-syl)-1H-irnidazo[4,5-c]pyridine (1) and 4-amino-1-(2,3-dideoxy-β-D-gfycero-pentofuranosyl)-1H-imidazo[4,5-c]pyridine (2), 3-deaza analogues of the anti-HIV agents 2′.3′-didehydro-2′,3′-dideoxyadenosine (d4A) and 2′,3′-dideoxy-adenosine (ddA), have been synthesized. The reaction of 3-deazaadenosine (3) with 2-acetoxyisobutyryl bromide yielded a mixture of cis and trans 2′,3′-ha-lo acetates which was convertcd into olefinic nucleoside (1) on treatment with a Zn/Cu couplc and then with methanolic ammonia. The 2′,3′-dideoxy-3-deazaadenosine (2) was obtained by catalytic reduction of 1. A number of phosphate triester derivatives of 2 have also been prepared. The diethyl-, dipropyl- and dibutylpliospliates 7a-c and 3-deazaadenosine have shown anti-HIV activity at non-cytotoxic doses. Compounds 7a-c have also shown significant cytostatic activity against murine colon adenocarcinoma cells.  相似文献   

14.
15.
16.
New 5-alkyl ethoxy- and aminocarbonylphosphonates of 3-azido-3-deoxythymidine (AZT) were synthesized, and their antiviral properties in HIV-1-infected cell cultures and stability to chemical hydrolysis were studied. The AZT 5-aminocarbonylphosphonates were shown to be significantly more stable in phosphate buffer (pH 7.2) than the corresponding ethoxycarbonylphosphonates. The therapeutic (selectivity) index of some of the compounds exceeded that of the parent AZT due to their higher antiviral activity.  相似文献   

17.
Abstract

Preparation of 3′-deoxypsicothymidines bearing a tether group at O1′ is described. Selective protection of the primary hydroxy functions of the starting nucleoside is briefly discussed.  相似文献   

18.
Abstract

The synthesis of 3′-C-fluoromethyl and 3′-C-azidomethyl nucleosides is reported. The 3′-C-fluoromethyl furanoside 4 was synthesized via fluoride ion induced displacement of the corresponding trifluoromethanesulfonate. The 3′-C-hydroxymethyl furanoside 3 was converted to the corresponding 3′-C-azidomethyl furanoside 6 using triphenylphosphine-carbon tetrabromide-lithium azide. The 3′-C-fluoromethyl furanoside derivative 5 and the 3′-C-azidomethyl furanoside derivative 7 were subsequently condensed with silylated purine and pyrimidine bases. Deblocking and separation of the anomers by chromatography afforded the α- and β-nucleoside analogues. The nucleosides were tested for inhibition of HIV multiplication in vitro and were found to be inactive in the assay.  相似文献   

19.
Abstract

The hydrolytic reactions of the dimethyl ester of 3′-deoxy-3′-thioinosine 3′-S-phosphorothiolate have been followed over a wide aciditty range by HPLC. At pH > 3, only hydroxide ion catalyzed isomerization to the 2′-dimethylphosphate takes place, whereas under more acidic conditions hydrolysis to the 2′-monomethylphosphate and 3′-S-monomethylphosphorothiolate competes. The latter is the only product accumulating in very acidic solutions (1 M hydrochloric acid). Mechanisms of the reactions are discussed.  相似文献   

20.
An efficient method of reduction of 3-azido-3-deoxythymidine and its 5-protected derivatives to 3-aminothymidine derivatives on a palladium catalyst using ammonium formate as a source of hydrogen was suggested.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 2, 2005, pp. 147–150.Original Russian Text Copyright © 2005 by Seregin, Chudinov, Yurkevich, Shvets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号