首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The linear cardiac tube of Drosophila, the dorsal vessel, is an important model organ for the study of cardiac specification and patterning in vertebrates. In Drosophila, the Hox segmentation gene abdominal-A (abd-A) is required for the specification of a functionally distinct heart region at the posterior of the dorsal vessel, from which blood is pumped anteriorly through a tube termed the aorta. Since we have previously shown that the posterior part of the aorta is specified during embryogenesis to form the adult heart during metamorphosis, we determined if the embryonic aorta is also patterned by the function of Hox segmentation genes. Using gain- and loss-of-function experiments, we demonstrate that the three Hox genes expressed in the posterior aorta and heart are sufficient to confer heart or posterior aorta fate throughout the dorsal vessel. Additionally, we demonstrate that Ultrabithorax and abd-A, but not Antennapedia, function to control cell number in the dorsal vessel. These studies add robustness to the model that homeotic selector genes pattern the Drosophila dorsal vessel, and further extend our understanding of how the cardiac tube is patterned in animal models.  相似文献   

2.
The embryonic dorsal vessel in Drosophila possesses anteroposterior polarity and is subdivided into two chamber-like portions, the aorta in the anterior and the heart in the posterior. The heart portion features a wider bore as compared with the aorta and develops inflow valves (ostia) that allow the pumping of hemolymph from posterior toward the anterior. Here, we demonstrate that homeotic selector genes provide positional information that determines the anteroposterior subdivision of the dorsal vessel. Antennapedia (Antp), Ultrabithorax (Ubx), abdominal-A (abd-A), and Abdominal-B (Abd-B) are expressed in distinct domains along the anteroposterior axis within the dorsal vessel, and, in particular, the domain of abd-A expression in cardioblasts and pericardial cells coincides with the heart portion. We provide evidence that loss of abd-A function causes a transformation of the heart into aorta, whereas ectopic expression of abd-A in more anterior cardioblasts causes the aorta to assume heart-like features. These observations suggest that the spatially restricted expression and activity of abd-A determine heart identities in cells of the posterior portion of the dorsal vessel. We also show that Abd-B, which at earlier stages is expressed posteriorly to the cardiogenic mesoderm, represses cardiogenesis. In light of the developmental and morphological similarities between the Drosophila dorsal vessel and the primitive heart tube in early vertebrate embryos, these data suggest that Hox genes may also provide important anteroposterior cues during chamber specification in the developing vertebrate heart.  相似文献   

3.
4.
5.
In Drosophila, segmentation genes partition the early embryo into reiterative segments along the anterior-posterior axis, while Hox genes assign segments their identities. Each segment is also subdivided into distinct anterior (A) and posterior (P) compartments based on the expression of the engrailed (en) segmentation gene. Differences in Hox expression often correlate with compartmental boundaries, but the genetic basis for these differences is not well understood. In this study, we extend previous results to describe a genetic circuit that controls the differential expression of two Hox genes, Ultrabithorax (Ubx) and abdominal-A (abd-A), within the A and P compartments of the abdominal ectoderm. Consistent with earlier findings, we show that en is essential for high Abd-A levels and low Ubx levels in the P compartment, whereas sloppy-paired (slp) is required for high Ubx levels in the A compartment. Overall, these results demonstrate that the compartmental expression of Ubx and abd-A is established through a repressive regulatory network between en, slp, Ubx and abd-A. We also show that abd-A expression in the P compartment is important for the formation of abdominal-specific cell types, suggesting that en and slp modulation of Hox expression within the A and P compartments is essential for embryonic patterning.  相似文献   

6.
The homeobox gene tinman and the nuclear receptor gene seven-up are expressed in mutually exclusive dorsal vessel cells in Drosophila, however, the physiological reason for this distinction is not known. We demonstrate that tin and svp-lacZ expression persists through the larval stage to the adult stage in the same pattern of cells expressing these genes in the embryo. In the larva, six pairs of Svp-expressing cells form muscular ostia, which permit hemolymph to enter the heart for circulation, however, more anterior Svp-expressing cells form the wall of the dorsal vessel. During pupation, the adult heart forms from a chimera of larval and imaginal muscle fibers. The portion of the dorsal vessel containing the larval ostia is histolyzed and the anterior Svp-expressing cells metamorphose into imaginal ostia. This is the first demonstration that the significant molecular diversity of cardial cells identified in the embryonic heart correlates with the formation of physiologically and functionally distinct muscle cells in the animal. Furthermore, our experiments define the cellular changes that occur as the larval heart is remodeled into an imaginal structure in an important model organism.  相似文献   

7.
Tbx20-related T-box genes have been implicated in the regulation of heart development in several vertebrate species. In the present report, we demonstrate that a pair of genes representing Drosophila orthologs of Tbx20, midline (mid) and H15, have important functions during the development of the Drosophila equivalent of the heart, i.e. the dorsal vessel. We show that mid is among the earliest known genes that are specifically expressed in all cardioblasts during early embryogenesis, and H15 expression is subsequently activated in the same cells. Mutant embryos lacking the activity of mid, or both mid and H15, are able to form dorsal vessels with largely normal numbers of cardioblasts and pericardial cells. Furthermore, the mutant cardioblasts express several general cardioblast markers such as Mef2 and Toll at normal levels. However, the expression of tinman (tin), which normally occurs in four out of six cardioblasts in each hemisegment of the dorsal vessel, is almost abolished. Conversely, the expression of the Dorsocross (Doc) T-box genes, which is normally restricted to the two Tin-negative cardioblasts in each hemisegment, is strongly expanded into the majority of cardioblasts in mid mutant and mid+H15-deficient embryos. Altogether, the data from the loss-of-function phenotypes demonstrate that mid, and to a lesser degree H15, have important roles in establishing the metameric patterning of cardioblast identities, but not in specifying cardioblasts as such. Ectopic expression of mid causes ectopic tin expression and, less efficiently, produces extra cardioblasts. We propose that one of the major functions of mid and H15 during cardioblast development is the re-activation of tin expression at a stage when the induction of tin by Dpp in the dorsal mesoderm has ceased. Through this activity, mid and H15 are required for the normal functional diversification of cardioblasts and the expression of tin-dependent terminal differentiation genes within the dorsal vessel.  相似文献   

8.
9.
Using sequence homology to the Drosophila Antennapedia gene, we isolated a homeobox-containing gene from the lepidopteran, Manduca sexta. Sequence analysis and in situ hybridizations to tissue sections suggest that the Manduca gene encodes a lepidopteran homologue of the Drosophila Bithorax complex gene abdominal-A. The predicted amino acid sequence of a 76 amino acid region that includes the homeobox and the regions immediately flanking it are identical between the Manduca and Drosophila genes. Northern blots reveal that the manduca abd-A gene is expressed first in the early embryo and continues to be expressed throughout later embryonic and larval stages. In situ hybridizations show that the posterior half of the first abdominal segment marks the anterior border of the Manduca abd-A expression. This expression pattern demonstrates the conservation of parasegments as domains of gene activity in the lepidopteran embryo. The Manduca abd-A expression extends from the posterior half of the first abdominal segment through the tenth abdominal segment, a domain that is greater than that of the Drosophila abd-A expression, and reflects the difference in visible segment number between the two insects.  相似文献   

10.
While some of the signaling molecules that govern establishment of the limb axis have been characterized, little is known about the downstream effector genes that interpret these signals. In Drosophila, the spalt gene is involved in cell fate determination and pattern formation in different tissues. We have cloned a chick homologue of Drosophila spalt, which we have termed csal1, and this study focuses on the regulation of csal1 expression in the limb bud. csal1 is expressed in limb buds from HH 17 to 26, in both the apical ectodermal ridge and the distal mesenchyme. Signals from the apical ridge are essential for csal1 expression, while the dorsal ectoderm is required for csal1 expression at a distance from the ridge. Our data indicate that both FGF and Wnt signals are required for the regulation of csal1 expression in the limb. Mutations in the human homologue of csal1, termed Hsal1/SALL1, result in a condition known as Townes-Brocks syndrome (TBS), which is characterized by preaxial polydactyly. The developmental expression of csal1 together with the digit phenotype in TBS patients suggests that csal1 may play a role in some aspects of distal patterning.  相似文献   

11.
12.
13.
14.
15.
The Wnt family includes a number of genes, such as wingless ( wg), which encode secreted glycoproteins that function in numerous developmental patterning processes. In order to gain a better understanding of crustacean pattern formation, a wg orthologue was cloned from the malacostracan crustacean Mysidium columbiae(mysid), and the expression pattern of this gene was compared with that of Drosophila wg. Although Drosophila wg is expressed in many developing tissues, such as the ventral neuroectoderm, M. columbiae wg (mcowg)expression is detected within only a subset of these tissues. mcowg is expressed in the dorsal part of each developing segment and within the developing eye, but not within the ventral neuroectoderm. Dorsal wg expression in Drosophila is required for heart and muscle development, and conservation of this dorsal wgexpression pattern suggests that mcowgmay function to pattern these tissues in mysids. Consistent with this, expression of Even-skipped (Eve) protein in heart precursor and muscle cells, which is dependent on Wg signaling in Drosophila, is also conserved in mysids. Within the developing mysid eye, mcowg is expressed in a pattern that is similar to the expression pattern of Drosophila wg in the fly eye disc. In Drosophila,Wg inhibits neural differentiation at the anterior margin of the eye disc and patterns the dorsal/ventral axis of the eye. These data indicate that mcowg may function similarly during mysid eye development. Analysis of mcowgexpression provides molecular evidence suggesting that the processes of heart, muscle, and eye patterning are likely to be conserved among insects and crustaceans.  相似文献   

16.
In Drosophila, the T-box genes optomotor-blind (omb) and H15 have been implicated in specifying the development of the dorso-ventral (DV) axis of the appendages. Results from the spider Cupiennius salei have suggested that this DV patterning system may be at least partially conserved. Here we extend the study of the DV patterning genes omb and H15 to a representative of the Myriapoda in order to add to the existing comparative data set and to gain further insight into the evolution of the DV patterning system in arthropod appendages. The omb gene of the millipede Glomeris marginata is expressed on the dorsal side of all appendages including trunk legs, maxillae, mandibles, and antennae. This is similar to what is known from Drosophila and Cupiennius and suggests that the role of omb in instructing dorsal fates is conserved in arthropods. Interestingly, the lobe-shaped portions of the mouthparts do not express omb, indicating that these are ventral components and thus may be homologous to the endites present in the corresponding appendages in insects. Concerning the H15 gene we were able to identify two paralogous genes in Glomeris. Both genes are expressed in the sensory organs of the maxilla and antenna, but only Gm-H15-1 is expressed along the ventral side of the trunk legs. The expression is more extensive than in Cupiennius, but less so than in Drosophila. In addition, no ventral expression domain is present in the maxilla, mandible, and antenna. Because of this, the role of H15 in the determination of ventral fate remains unclear.  相似文献   

17.
Elaboration of the Drosophila body plan depends on a series of cell-identity decisions and morphogenetic movements regulated by intercellular signals. For example, Jun N-terminal kinase signaling regulates cell fate decisions and morphogenesis during dorsal closure, while Wingless signaling regulates segmental patterning of the larval cuticle via Armadillo. wingless or armadillo mutant embryos secrete a lawn of ventral denticles; armadillo mutants also exhibit dorsal closure defects. We found that mutations in puckered, a phosphatase that antagonizes Jun N-terminal kinase, suppress in a dose-sensitive manner both the dorsal and ventral armadillo cuticle defects. Furthermore, we found that activation of the Jun N-terminal kinase signaling pathway suppresses armadillo-associated defects. Jun N-terminal kinase signaling promotes dorsal closure, in part, by regulating decapentaplegic expression in the dorsal epidermis. We demonstrate that Wingless signaling is also required to activate decapentaplegic expression and to coordinate cell shape changes during dorsal closure. Together, these results demonstrate that MAP-Kinase and Wingless signaling cooperate in both the dorsal and ventral epidermis, and suggest that Wingless may activate both the Wingless and the Jun N-terminal kinase signaling cascades.  相似文献   

18.
Singh A  Chan J  Chern JJ  Choi KW 《Genetics》2005,171(1):169-183
Dorsoventral (DV) patterning is essential for growth of the Drosophila eye. Recent studies suggest that ventral is the default state of the early eye, which depends on Lobe (L) function, and that the dorsal fate is established later by the expression of the dorsal selector gene pannier (pnr). However, the mechanisms of regulatory interactions between L and dorsal genes are not well understood. For studying the mechanisms of DV patterning in the early eye disc, we performed a dominant modifier screen to identify additional genes that interact with L. The criterion of the dominant interaction was either enhancement or suppression of the L ventral eye loss phenotype. We identified 48 modifiers that correspond to 16 genes, which include fringe (fng), a gene involved in ventral eye patterning, and members of both Hedgehog (Hh) and Decapentaplegic (Dpp) signaling pathways, which promote L function in the ventral eye. Interestingly, 29% of the modifiers (6 enhancers and 9 suppressors) identified either are known to interact genetically with pnr or are members of the Wingless (Wg) pathway, which acts downstream from pnr. The detailed analysis of genetic interactions revealed that pnr and L mutually antagonize each other during second instar of larval development to restrict their functional domains in the eye. This time window coincides with the emergence of pnr expression in the eye. Our results suggest that L function is regulated by multiple signaling pathways and that the mutual antagonism between L and dorsal genes is crucial for balanced eye growth.  相似文献   

19.
Heart development exhibits some striking similarities between vertebrates and arthropods, for example in both cases the heart develops as a linear tube from mesodermal cells. Furthermore, the underlying molecular pathways exhibit a significant number of similarities between vertebrates and the fruit fly Drosophila, suggesting a common origin of heart development in the last common ancestor of flies and vertebrates. However, there is hardly any molecular data from other animals. Here we show that many of the key genes are also active in heart development in the spider Cupiennius salei. Spiders belong to the chelicerates and are distantly related to insects with respect to the other arthropods. The tinman/Nkx2.5 ortholog is the first gene to be specifically expressed in the presumptive spider heart, like in flies and vertebrates. We also show that tinman is expressed in a similar way in the beetle Tribolium castaneum. Taken together this demonstrates that tinman has a conserved role in the specification of the arthropod heart. In addition, we analyzed the expression of other heart genes (decapentaplegic, Wnt5, H15, even-skipped, and Mef2 ) in Cupiennius. The expression of these genes suggests that the genetic pathway of heart development may be largely conserved among arthropods. However, a major difference is seen in the earlier expression of the even-skipped gene in the developing spider heart compared with Drosophila, implying that the role of even-skipped in heart formation might have changed during arthropod evolution. The most striking finding, however, is that in addition to the dorsal tissue of the fourth walking leg segment and the opisthosomal segments, we discovered tinman-expressing cells that arise from a position dorsal to the cephalic lobe and that contribute to the anterior dorsal vessel. In contrast to the posterior heart tissue, these cells do not express the other heart genes. The spider heart thus is composed of two distinct populations of cells.  相似文献   

20.
The E loci in Bombyx mori are expected to contain a homeotic gene complex specifying the identities of the larval abdominal segments. However, the molecular structure of this complex remains to be determined. We have started to analyze the structural changes in the E complex mutations. We used three newly isolated Bombyx homeobox genes as probes. These genes are probably homologues of the Ultrabithorax (Ubx), abdominal-A (abd-A) and Abdominal-B (Abd-B) in the Drosophila bithorax complex, because the amino-acid sequences of the homeobox regions in these Bombyx genes are almost identical to those of Drosophila genes. We found that the Bombyx Ubx and abd-A genes are deleted in the EN chromosome, and the Bombyx abd-A gene is deleted in the ECa chromosome. From these results, we conclude that the Bombyx E complex consists of the Ubx, abd-A and possibly Abd-B genes, which may play similar roles to their homologues in the Drosophila bithorax complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号