首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
High throughput screening (HTS) is a widely used effective approach in genome-wide association and large scale protein expression studies, drug discovery, and biomedical imaging research. How to accurately identify candidate ‘targets’ or biologically meaningful features with a high degree of confidence has led to extensive statistical research in an effort to minimize both false-positive and false-negative rates. A large body of literature on this topic with in-depth statistical contents is available. We examine currently available statistical methods on HTS and aim to summarize some selected methods into a concise, easy-tofollow introduction for experimental biologists.  相似文献   

2.
Imaging polarimetry was demonstrated as a highly parallel method of determining optical rotation of biochemical samples. The imaging polarimeter utilized a bright, uniform light source wavelength-filtered to near the sodium D line, a sample array flanked by inlet and analyzing polarizers, and a CCD camera fitted with an equal-perspective telecentric lens. The prototype apparatus was demonstrated to have an optical resolution better than 0.08 degrees. The potential for high throughput screening was demonstrated by imaging chiral solutions in 1536-well microtiter plates and by real-time monitoring of 30 simultaneous chiral enzymatic reactions. Improvements in polarizer and CCD technology may broadly expand the technique's applicability to fields such as directed evolution and combinatorial chemistry, where screening throughput is currently limiting for chiral applications.  相似文献   

3.
We describe two new methods of fluorescence sensing for use in high throughput screening (HTS). Modulation sensing transforms analyte-dependent intensity changes into a change in the low-frequency modulation signal. Polarization sensing transforms an intensity change into a change in polarization. Both methods are internally calibrated by using a reference film immediately adjacent to the sample, which can be readily located on the HTS plate or on a nearby optical component and provides an intensity or polarization reference. Modulation sensing and polarization sensing were both shown useful for measurements of fluorophore concentrations, pH, or calcium concentrations in the wells of HTS plates. Sensing with a reference film provides the opportunity to internally reference HTS measurements without the need for additions to the sample. This approach can provide standardization for assays performed at different times.  相似文献   

4.
Inorganic phosphate release, [Pi], is often measured in an enzymatic reaction in a high throughput setting. Based on the published mechanism, we designed a protocol for our screening for inhibitors of SAICAR synthetase (PurC), and we found a gradual increase in [Pi] in positive control samples over the course of the day. Further investigation indicated that hydrolysis of ATP catalyzed by PurC, rather than substrate-related phosphate release, was responsible for a partial contribution to the signals in the control samples. Thus substrate-independent ATPase activity may complicate high throughput screening.  相似文献   

5.
AequoScreen, a cellular aequorin-based functional assay, has been optimized for luminescent high-throughput screening (HTS) of G protein-coupled receptor (GPCRs). AequoScreen is a homogeneous assay in which the cells are loaded with the apoaequorin cofactor coelenterazine, diluted in assay buffer, and injected into plates containing the samples to be tested. A flash of light is emitted following the calcium increase resulting from the activation of the GPCR by the sample. Here we have validated a new plate reader, the Hamamatsu Photonics FDSS6000, for HTS in 96- and 384-well plates with CHO-K1 cells stably coexpressing mitochondrial apoaequorin and different GPCRs (AequoScreen cell lines). The acquisition time, plate type, and cell number per well have been optimized to obtain concentration-response curves with 4000 cells/well in 384-well plates and a high signal:background ratio. The FDSS6000 and AequoScreen cell lines allow reading of twenty 96- or 384-well plates in 1 h with Z' values of 0.71 and 0.78, respectively. These results bring new insights to functional assays, and therefore reinforce the interest in aequorin-based assays in a HTS environment.  相似文献   

6.
High throughput process development offers unique approaches to explore complex process design spaces with relatively low material consumption. Batch chromatography is one technique that can be used to screen chromatographic conditions in a 96‐well plate. Typical batch chromatography workflows examine variations in buffer conditions or comparison of multiple resins in a given process, as opposed to the assessment of protein loading conditions in combination with other factors. A modification to the batch chromatography paradigm is described here where experimental planning, programming, and a staggered loading approach increase the multivariate space that can be explored with a liquid handling system. The iterative batch chromatography (IBC) approach is described, which treats every well in a 96‐well plate as an individual experiment, wherein protein loading conditions can be varied alongside other factors such as wash and elution buffer conditions. As all of these factors are explored in the same experiment, the interactions between them are characterized and the number of follow‐up confirmatory experiments is reduced. This in turn improves statistical power and throughput. Two examples of the IBC method are shown and the impact of the load conditions are assessed in combination with the other factors explored.  相似文献   

7.
Proteomics and cellomics clearly benefit from the molecular insights in cellular biochemical events that can be obtained by advanced quantitative microscopy techniques like fluorescence lifetime imaging microscopy and F?rster resonance energy transfer imaging. The spectroscopic information detected at the molecular level can be combined with cellular morphological estimators, the analysis of cellular localization, and the identification of molecular or cellular subpopulations. This allows the creation of powerful assays to gain a detailed understanding of the molecular mechanisms underlying spatiotemporal cellular responses to chemical and physical stimuli. This work demonstrates that the high content offered by these techniques can be combined with the high throughput levels offered by automation of a fluorescence lifetime imaging microscope setup capable of unsupervised operation and image analysis. Systems and software dedicated to image cytometry for analysis and sorting represent important emerging tools for the field of proteomics, interactomics, and cellomics. These techniques could soon become readily available both to academia and the drug screening community by the application of new all-solid-state technologies that may results in cost-effective turnkey systems. Here the application of this screening technique to the investigation of intracellular ubiquitination levels of alpha-synuclein and its familial mutations that are causative for Parkinson disease is shown. The finding of statistically lower ubiquitination of the mutant alpha-synuclein forms supports a role for this modification in the mechanism of pathological protein aggregation.  相似文献   

8.
The design and analysis of experiments using gene expression microarrays is a topic of considerable current research, and work is beginning to appear on the analysis of proteomics and metabolomics data by mass spectrometry and NMR spectroscopy. The literature in this area is evolving rapidly, and commercial software for analysis of array or proteomics data is rarely up to date, and is essentially nonexistent for metabolomics data. In this paper, I review some of the issues that should concern any biologists planning to use such high-throughput biological assay data in an experimental investigation. Technical details are kept to a minimum, and may be found in the referenced literature, as well as in the many excellent papers which space limitations prevent my describing. There are usually a number of viable options for design and analysis of such experiments, but unfortunately, there are even more non-viable ones that have been used even in the published literature. This is an area in which up-to-date knowledge of the literature is indispensable for efficient and effective design and analysis of these experiments. In general, we concentrate on relatively simple analyses, often focusing on identifying differentially expressed genes and the comparable issues in mass spectrometry and NMR spectroscopy (consistent differences in peak heights or areas for example). Complex multivariate and pattern recognition methods also need much attention, but the issues we describe in this paper must be dealt with first. The literature on analysis of proteomics and metabolomics data is as yet sparse, so the main focus of this paper will be on methods devised for analysis of gene expression data that generalize to proteomics and metabolomics, with some specific comments near the end on analysis of metabolomics data by mass spectrometry and NMR spectroscopy.  相似文献   

9.
Giardia lamblia is a protozoan parasite that causes widespread gastrointestinal illness. Drugs to treat giardiasis are limited, but efforts to discover new anti-giardial compounds are constrained by the lack of a facile system for cell culture and inhibitor testing. We achieved robust and reproducible growth of G. lamblia in 384-well tissue culture plates in a modified TYI-S-33 medium. A high throughput assay for the screening of potential anti-giardial compounds was developed utilizing the WB strain of G. lamblia and automated optical detection of parasites after growth with tested inhibitors. We screened a library of 1600 known bioactive molecules and identified 12 compounds that inhibited growth of G. lamblia at low- or sub-micromolar concentrations. Our high throughput assay should facilitate evaluation of available chemical libraries for novel drugs to treat giardiasis.  相似文献   

10.
【目的】建立高效敏感的高通量筛选方法,用于筛选头孢克洛合成活性提高或热稳定性提高的a-氨基酸酯水解酶。【方法】根据头孢克洛在碱性条件下水解生成的衍生物在340 nm处有特征吸收峰的原理,制作出标准曲线。采用全细胞96孔板紫外分光光度法高通量测定a-氨基酸酯水解酶突变体的头孢克洛合成活性。【结果】头孢克洛含量与△A340?405在0.1?0.6×10?3 mol/L浓度范围内有良好的线性关系, 服从朗伯-比尔定律, 平均回收率为99.8%?101.3%。一轮定点饱和突变产生的2 300个克隆经该方法的筛选, 获得3株kcat提高40%以上, 4株半失活温度较野生型提高5 °C以上的突变体酶。【结论】该方法准确可靠,每天筛选量可达到2 000个反应, 达到高通量筛选要求。  相似文献   

11.
A set of UV-inducible autolytic vectors for high throughput screening   总被引:1,自引:0,他引:1  
Li S  Xu L  Hua H  Ren C  Lin Z 《Journal of biotechnology》2007,127(4):647-652
A high throughput screening scheme is often a prerequisite for directed evolution of enzymes or metagenomic analysis of DNA samples. For assaying intracellular enzymes of interest (e.g. when Escherichia coli is used), it requires cell lysis in many cases, chemical or enzymatic, which can be tedious and cost-consuming. In this study, a set of UV-inducible autolytic vectors was constructed to offer a simpler means of cell lysis that is free of additional liquid handling. The SRRz lysis gene cassette from bacteriophage Lambda was cloned downstream of a UV-inducible promoter, the recA promoter or the umuDC promoter, and further inserted into the backbone of pUC18, and transformed into E. coli BL21 cells. The SRRz expression and cell lysis was induced by UV irradiation. For both the recA and umuDC promoters, at 30 degrees C the lysis efficiency was found to be consistent and above 60% as measured using beta-galactosidase as the reporter. However, at 37 degrees C the lysis profiles were found to be erratic. UV lysis in 96-well plates also produced consistent lysis results that were comparable to those obtained by lysozyme treatment, demonstrating the utility of these autolytic vectors in high throughput screening. This set of artificial SRRz autolysis units should be transferable to other vectors. Surprisingly, it was found that the E. coli BL21(DE3) was also partially disrupted under UV irradiation, with a lysis efficiency of 44.5% at 30 degrees C, and 22.5% at 37 degrees C.  相似文献   

12.
With the exponential rise in the number of viable novel drug targets, computational methods are being increasingly applied to accelerate the drug discovery process. Virtual High Throughput Screening (vHTS) is one such established methodology to identify drug candidates from large collection of compound libraries. Although it complements the expensive and time consuming High Throughput Screening (HTS) of compound libraries, vHTS possess inherent challenges. The successful vHTS requires the careful implementation of each phase of computational screening experiment right from target preparation to hit identification and lead optimization. This article discusses some of the important considerations that are imperative for designing a successful vHTS experiment.  相似文献   

13.
Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying ‘hits’, or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput.  相似文献   

14.
药物筛选新方法--高通量筛选   总被引:7,自引:0,他引:7  
介绍了高通量筛选的概念、原理及其各个组成部分,着重阐明了高通量筛选的筛选模式,检测方法和应用实例,并简单介绍了国内在这方面的研究进展。  相似文献   

15.
Enzymes are becoming increasingly important tools for synthesizing and modifying fine and bulk chemicals. The availability of biocatalysts which fulfil the requirements of industrial processes is often limited. Recruiting suited enzymes from natural (e.g. metagenomes) and artificial (e.g. directed evolution) biodiversity is based on screening libraries of microbial clones expressing enzyme variants. However, exploring the complex diversity of such libraries needs efficient screening methods. Overcoming the "screening bottleneck" requires rapid high throughput technology allowing the analysis of a large diversity of different enzymes and applying different screening conditions. Facing these facts an efficient and cost effective method for high throughput screening of large enzyme libraries at the colony level was developed. Therefore, ordered high density micro-colony arrays were combined with optical sensor technology and automated image analysis. The system generally allows the simultaneous monitoring of enzyme activities reflected by up to 7000 micro-colonies spotted on a filter in the size of a micro-titer plate. A developed replica option also allows the analysis of clones under varying external conditions. The method was verified by a model screening using esterases and was proved to provide reliable enzyme activity measurements within single micro-colonies allowing the discrimination of activity differences in the range of 10-20%.  相似文献   

16.
BACKGROUND: The recent development of semiautomated techniques for staining and analyzing flow cytometry samples has presented new challenges. Quality control and quality assessment are critical when developing new high throughput technologies and their associated information services. Our experience suggests that significant bottlenecks remain in the development of high throughput flow cytometry methods for data analysis and display. Especially, data quality control and quality assessment are crucial steps in processing and analyzing high throughput flow cytometry data. METHODS: We propose a variety of graphical exploratory data analytic tools for exploring ungated flow cytometry data. We have implemented a number of specialized functions and methods in the Bioconductor package rflowcyt. We demonstrate the use of these approaches by investigating two independent sets of high throughput flow cytometry data. RESULTS: We found that graphical representations can reveal substantial nonbiological differences in samples. Empirical Cumulative Distribution Function and summary scatterplots were especially useful in the rapid identification of problems not identified by manual review. CONCLUSIONS: Graphical exploratory data analytic tools are quick and useful means of assessing data quality. We propose that the described visualizations should be used as quality assessment tools and where possible, be used for quality control.  相似文献   

17.
Fluorescence polarization and anisotropy are two nearly equivalent techniques that have together, over the past 5 years, achieved wide use in high throughput screening in drug discovery. These are single-label methods that can be used to construct homogeneous assays that are fast, sensitive, and resistant to some significant interferences. Moreover, the assays are relatively inexpensive. This review surveys the peer-reviewed literature on the subject and explores some of the fundamental issues that bear on assay performance.  相似文献   

18.
The drug discovery process has been profoundly changed recently by the adoption of computational methods helping the design of new drug candidates more rapidly and at lower costs. In silico drug design consists of a collection of tools helping to make rational decisions at the different steps of the drug discovery process, such as the identification of a biomolecular target of therapeutical interest, the selection or the design of new lead compounds and their modification to obtain better affinities, as well as pharmacokinetic and pharmacodynamic properties. Among the different tools available, a particular emphasis is placed in this review on molecular docking, virtual high-throughput screening and fragment-based ligand design.  相似文献   

19.
Fluorescence polarization assays in 384-well microtiter plates have been demonstrated. The performance is suitable for high throughput drug screening applications with respect to speed of analysis, displaceable signal, precision, and sensitivity to various reagents. Rank order of potency was maintained relative to [(125)I]-ligand filtration assays, and the effects of the highly colored compounds, tartrazine and Chicago Sky Blue, were insignificant on the polarization signal up to a concentration of 1 microM. These attributes suggest that accurate assessment of drug binding can be obtained.  相似文献   

20.
High throughput screening (HTS) of chromatography resins can accelerate downstream process development by rapidly providing information on product and impurity partitioning over a wide range of experimental conditions. In addition to the removal of typical product and process‐related impurities, chromatography steps are also used to remove potential adventitious viral contaminants and non‐infectious retrovirus‐like particles expressed by rodent cell lines used for production. This article evaluates the feasibility of using HTS in a 96‐well batch‐binding format to study removal of the model retrovirus xenotropic murine leukemia virus (xMuLV) from product streams. Two resins were examined: the anion exchange resin Q Sepharose Fast Flow? (QSFF) and Capto adhere?, a mixed mode resin. QSFF batch‐binding HTS data was generated using two mAbs at various pHs, NaCl concentrations, and levels of impurities. Comparison of HTS data to that generated using the column format showed good agreement with respect to virus retentation at different pHs, NaCl concentrations and impurity levels. Results indicate that NaCl concentration and impurity level, but not pH, are key parameters that can impact xMuLV binding to both resins. Binding of xMuLV to Capto adhere appeared to tolerate higher levels of NaCl and impurity than QSFF, and showed some product‐specific impact on binding that was not observed with QSFF. Overall, the results demonstrate that the 96‐well batch‐binding HTS technique can be an effective tool for rapidly defining conditions for robust virus clearance on chromatographic resins. Biotechnol. Bioeng. 2013; 110: 1984–1994. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号