首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Recent studies suggest that the major pathway for exit of HCO3- across the basolateral membrane of the proximal tubule cell is electrogenic Na+/HCO3- co-transport. We therefore evaluated the possible presence of Na+/HCO3- co-transport in basolateral membrane vesicles isolated from the rabbit renal cortex. Imposing an inward HCO3- gradient induced the transient uphill accumulation of Na+, and imposing an outward Na+ gradient caused HCO3- -dependent generation of an inside-acid pH gradient as monitored by quenching of acridine orange fluorescence, findings consistent with the presence of Na+/HCO3- co-transport. In the absence of other driving forces, generating an inside-positive membrane potential by imposing an inward K+ gradient in the presence of valinomycin caused net Na+ uptake via a HCO3- -dependent pathway, indicating that Na+/HCO3- co-transport is electrogenic and associated with a flow of negative charge. Imposing transmembrane Cl- gradients did not appreciably affect HCO3- gradient-stimulated Na+ influx, suggesting that Na+/HCO3- co-transport is not Cl- -dependent. The rate of HCO3- gradient-stimulated Na+ influx was a simple, saturable function of the Na+ concentration (Km = 9.7 mM, Vmax = 160 nmol/min/mg of protein), was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (I50 = 100 microM), but was inhibited less than 10% by up to 1 mM amiloride. We could not demonstrate a HCO3- -dependent or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive component of Na+ influx in microvillus membrane vesicles. This study thus indicates the presence of a transport system mediating electrogenic Na+/HCO3- co-transport in basolateral, but not luminal, membrane vesicles isolated from the rabbit renal cortex. Analogous to the use of renal microvillus membrane vesicles to study Na+/H+ exchange, renal basolateral membrane vesicles may be a useful model system for examining the kinetics and possible regulation of Na+/HCO3- co-transport.  相似文献   

2.
The mechanism of HCO3- translocation across the proximal tubule basolateral membrane was investigated by testing for Na+-HCO3- cotransport using isolated membrane vesicles purified from rat renal cortex. As indicated by 22Na+ uptake, imposing an inwardly directed HCO3- concentration gradient induced the transient concentrative accumulation of intravesicular Na+. The stimulation of basolateral membrane vesicle Na+ uptake was specifically HCO3(-)-dependent as only basolateral membrane-independent Na+ uptake was stimulated by an imposed hydroxyl gradient in the absence of HCO3-. No evidence for Na+-HCO3- cotransport was detected in brush border membrane vesicles. Charging the vesicle interior positive stimulated net intravesicular Na+ accumulation in the absence of other driving forces via a HCO3(-)-dependent pathway indicating the flow of negative charge accompanies the Na+-HCO3- cotransport event. Among the anion transport inhibitors tested, 4-4'-diisothiocyanostilbene-2,2'-disulfonic acid demonstrated the strongest inhibitor potency at 1 mM. The Na+-coupled transport inhibitor harmaline also markedly inhibited HCO3- gradient-driven Na+ influx. A role for carbonic anhydrase in the mechanism of Na+-HCO3- cotransport is suggested by the modest inhibition of HCO3- gradient driven Na+ influx caused by acetazolamide. The imposition of Cl- concentration gradients had a marked effect on HCO3- gradient-driven Na+ influx which was furosemide-sensitive and consistent with the operation of a Na+-HCO3- for Cl- exchange mechanism. The results of this study provide evidence for an electrogenic Na+-HCO3- cotransporter in basolateral but not microvillar membrane vesicles isolated from rat kidney cortex. The possible existence of an additional basolateral membrane HCO3(-)-translocating pathway mediating Na+-HCO3- for Cl- exchange is suggested.  相似文献   

3.
Membrane transport pathways mediatingtranscellular secretion of urate across the proximal tubule wereinvestigated in brush-border membrane vesicles (BBMV) isolated fromavian kidney. An inside-positive K diffusion potential induced aconductive uptake of urate to levels exceeding equilibrium.Protonophore-induced dissipation of membrane potential significantlyreduced voltage-driven urate uptake. Conductive uptake of urate wasinhibitor sensitive, substrate specific, and a saturable function ofurate concentration. Urate uptake was trans-stimulated byurate and cis-inhibited by p-aminohippurate (PAH). Conductive uptake of PAH was cis-inhibited by urate.Urate uptake was unaffected by an outward -ketoglutarate gradient. In the absence of a membrane potential, urate uptake was similar in thepresence and absence of an imposed inside-alkaline pH gradient or anoutward Cl gradient. These observations suggest a uniporter-mediated facilitated diffusion of urate as a pathway for passive efflux acrossthe brush border membrane of urate-secreting proximal tubule cells.

  相似文献   

4.
p-Aminohippuric acid (PAH) uptake was studied in basal-lateral membrane vesicles prepared from rabbit renal cortex. An outwardly directed hydroxyl gradient (pHo = 6.0, pHi = 7.6) stimulated PAH uptake slightly over that when the internal and external pH values were equal at 7.6. A 100 mM sodium gluconate gradient directed into the basal-lateral membrane vesicles increased PAH uptake about 2-fold over that when N-methyl-D-glucamine or potassium gluconate gradients were present. When hydroxyl and sodium gradients were simultaneously imposed (pHo = 6.0, pHi = 7.6 and 100 mM sodium gluconate extravesicularly) PAH uptake was stimulated greater than with the pH or Na+ gradient alone. In fact, an 'overshoot' was observed. Countertransport experiments showed that either intravesicular PAH or intravesicular PAH and Na+ could stimulate 3H-PAH uptake. Probenecid, an inhibitor of organic anion transport, inhibited both the hydroxyl-stimulated and Na+ gradient-stimulated PAH uptake but the greatest inhibition by probenecid was seen when the hydroxyl and sodium gradients were both present. Thus, it is proposed that the driving force for PAH accumulation across the basal-lateral membrane of the proximal tubule is a transport system which moves Na+ and PAH into the cell for an hydroxyl ion leaving the cell, i.e. a sodium-dependent anion-anion exchange system.  相似文献   

5.
The organic anion p-aminohippurate (PAH) is specifically secreted by the renal proximal tubule. The possibility was examined that the probenecid sensitive PAH transport system (which is involved in this secretory process in renal proximal tubule cells in vivo) is retained in primary cultures of rabbit kidney proximal tubule cells. Significant 3H-PAH uptake into primary cultures of proximal tubule cells was observed. After 10 min, 150 pmole PAH/mg protein had accumulated intracellularly. Given an intracellular fluid volume of 10 microliter/mg protein, the intracellular PAH concentration was estimated to be 15 microM. The initial rate of PAH uptake (when 50 microM PAH was in the uptake buffer) was inhibited 50% by 2 mM probenecid. Intact monolayers also exhibited Na+-dependent alpha methyl-D-glucoside uptake (an apical marker). Basolateral membranes were purified from primary rabbit kidney proximal tubule cell cultures. Probenecid sensitive PAH uptake into the membrane vesicles derived from the primary cultures was observed. The rate of PAH uptake was equivalent to that obtained with vesicles obtained from the rabbit renal cortex. No significant Na+-dependent D-glucose uptake into the vesicles was observed, indicating that primarily basolateral membrane vesicles had indeed been obtained.  相似文献   

6.
We evaluated the mechanism of oxalate transport in basolateral membrane vesicles isolated from the rabbit renal cortex. An outward HCO3- gradient induced the transient uphill accumulation of oxalate and sulfate, indicating the presence of oxalate/HCO3- exchange and sulfate/HCO3- exchange. For oxalate, sulfate, or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, the K1/2 value for oxalate/HCO3- exchange was nearly identical to that for sulfate/HCO3- exchange, suggesting that both exchange processes occur via the same transport system. This was further supported by the finding of sulfate/oxalate exchange. Thiosulfate/sulfate exchange and thiosulfate/oxalate exchange were also demonstrated, but a variety of other tested anions including Cl-, p-aminohippurate, and lactate did not exchange for sulfate or oxalate. Na+ did not affect sulfate or oxalate transport, indicating that neither anion undergoes Na+ co-transport or Na+-dependent anion exchange in these membrane vesicles. Finally, we found that the stoichiometry of exchange is 1 sulfate or oxalate per 2 HCO3-, or a thermodynamically equivalent process. We conclude that oxalate, but not other organic or inorganic anions of physiologic importance, can share the sulfate/HCO3- exchanger in renal basolateral membrane vesicles. In series with luminal membrane oxalate/Cl- (formate) exchange, exchange of oxalate for HCO3- or sulfate across the basolateral membrane provides a possible transcellular route for oxalate transport in the proximal tubule.  相似文献   

7.
The movement of Ca2+ across the basolateral plasma membrane was determined in purified preparations of this membrane isolated from rabbit proximal and distal convoluted tubules. The ATP-dependent Ca2+ uptake was present in basolateral membranes from both these tubular segments, but the activity was higher in the distal tubules. A very active Na+/Ca2+ exchange system was also demonstrated in the distal-tubular membranes, but in proximal-tubular membranes this exchange system was not demonstrable. The presence of Na+ outside the vesicles gradually inhibited the ATP-dependent Ca2+ uptake in the distal-tubular-membrane preparations, but remained without effect in those from the proximal tubules. The activity of the Na+/Ca2+ exchange system in the distal-tubular membranes was a function of the imposed Na+ gradient. These results suggest that the major differences in the characteristics of Ca2+ transport in the proximal and in the distal tubules are due to the high activity of a Na+/Ca2+ exchange system in the distal tubule and its virtual absence in the proximal tubule.  相似文献   

8.
Two independent methods, induced osmosis and solvent drag, were used to determine the reflection coefficients for NaCl (sigma NaCl) in brush border and basolateral membrane vesicles isolated from rabbit proximal tubule. In the induced osmosis method, vesicles loaded with sucrose were subjected to varying inward NaCl gradients in a stopped-flow apparatus. sigma NaCl was determined from the osmolality of the NaCl solution required to cause no initial osmotic water flux as measured by light scattering (null point). By this method sigma NaCl was greater than 0.92 for both apical and basolateral membranes with best estimates of 1.0. sigma NaCl was determined by the solvent drag method using the Cl-sensitive fluorescent indicator, 6-methoxy-N-[3-sulfopropyl]quinolinium (SPQ), to detect the drag of Cl into vesicles by inward osmotic water movement caused by an outward osmotic gradient. sigma NaCl was determined by comparing experimental data with theoretical curves generated using the coupled flux equations of Kedem and Katchalsky. By this method we found that sigma NaCl was greater than 0.96 for apical and greater than 0.98 for basolateral membrane vesicles, with best estimates of 1.0 for both membranes. These results demonstrate that sigma NaCl for proximal tubule apical and basolateral membranes are near unity. Taken together with previous results, these data suggest that proximal tubule water channels are long narrow pores that exclude NaCl.  相似文献   

9.
M Takano  K Inui  T Okano  R Hori 《Life sciences》1985,37(17):1579-1585
The transport of cimetidine by rat renal brush border and basolateral membrane vesicles has been studied in relation to the transport system of organic cation. Cimetidine inhibited [3H]tetraethylammonium uptake by basolateral membrane vesicles in a dose dependent manner, and the degree of the inhibition was almost the same as that by unlabeled tetraethylammonium. In contrast, cimetidine inhibited the active transport of [3H]tetraethylammonium by brush border membrane vesicles more strongly than unlabeled tetraethylammonium did. In agreement with the transport mechanism of tetraethylammonium in brush border membranes, the presence of an H+ gradient ([H+]i greater than [H+]o) induced a marked stimulation of cimetidine uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was inhibited by unlabeled tetraethylammonium. These results suggest that cimetidine can share common carrier transport systems with tetraethylammonium in renal brush border and basolateral membranes, and that cimetidine transport across brush border membranes is driven by an H+ gradient via an H+-organic cation antiport system.  相似文献   

10.
Cl(-)-HCO3- exchange in rat renal basolateral membrane vesicles   总被引:1,自引:0,他引:1  
Pathways for HCO3- transport across the basolateral membrane were investigated using membrane vesicles isolated from rat renal cortex. The presence of Cl(-)-HCO3- exchange was assessed directly by 36Cl- tracer flux measurements and indirectly by determinations of acridine orange absorbance changes. Under 10% CO2/90% N2 the imposition of an outwardly directed HCO3- concentration gradient (pHo 6/pHi 7.5) stimulated Cl- uptake compared to Cl- uptake under 100% N2 in the presence of a pH gradient alone. Mediated exchange of Cl- for HCO3- was suggested by the HCO3- gradient-induced concentrative accumulation of intravesicular Cl-. Maneuvers designed to offset the development of ion-gradient-induced diffusion potentials had no significant effect on the magnitude of HCO3- gradient-driven Cl- uptake further suggesting chemical as opposed to electrical Cl(-)-HCO3- exchange coupling. Although basolateral membrane vesicle Cl- uptake was observed to be voltage sensitive, the DIDS insensitivity of the Cl- conductive pathway served to distinguish this mode of Cl- translocation from HCO3- gradient-driven Cl- uptake. No evidence for K+/Cl- cotransport was obtained. As determined by acridine orange absorbance measurements in the presence of an imposed pH gradient (pHo 7.5/pHi 6), a HCO3- dependent increase in the rate of intravesicular alkalinization was observed in response to an outwardly directed Cl- concentration gradient. The basolateral membrane vesicle origin of the observed Cl(-)-HCO3- exchange activity was verified by experiments performed with purified brush-border membrane vesicles. In contrast to our previous observations of the effect of Cl- on HCO3- gradient-driven Na+ uptake suggesting a basolateral membrane Na+-HCO3- for Cl- exchange mechanism, no effect of Na+ on Cl-HCO3- exchange was observed in the present study.  相似文献   

11.
Transport of [3H]tetraethylammonium, an organic cation, has been studied in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. Some characteristics of carrier-mediated transport for tetraethylammonium were demonstrated in brush-border and basolateral membrane vesicles; the uptake was saturable, was stimulated by the countertransport effect, and showed discontinuity in an Arrhenius plot. In brush-border membrane vesicles, the presence of an H+ gradient ( [H+]i greater than [H+]o) induced a marked stimulation of tetraethylammonium uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was completely inhibited by HgCl2. In contrast, the uptake of tetraethylammonium by basolateral membrane vesicles was unaffected by an H+ gradient. Tetraethylammonium uptake by basolateral membrane vesicles was significantly stimulated by a valinomycin-induced inside-negative membrane potential, while no effect of membrane potential was observed in brush-border membrane vesicles. These results suggest that tetraethylammonium transport across brush-border membranes is driven by an H+ gradient via an electroneutral H+-tetraethylammonium antiport system, and that tetraethylammonium is transported across basolateral membranes via a carrier-mediated system and this process is stimulated by an inside-negative membrane potential.  相似文献   

12.
Ca2+ transport was studied by using basolateral plasma membrane vesicles from rat parotid gland prepared by a Percoll gradient centrifugation method. In these membrane vesicles, there were two Ca2+ transport systems; Na+/Ca2+ exchange and ATP-dependent Ca2+ transport. An outwardly directed Na+ gradient increased Ca2+ uptake. Ca2+ efflux from Ca2+-preloaded vesicles was stimulated by an inwardly directed Na+ gradient. However, Na+/Ca2+ exchange did not show any 'uphill' transport of Ca2+ against its own gradient. ATP-dependent Ca2+ transport exhibited 'uphill' transport. An inwardly directed Na+ gradient also decreased Ca2+ accumulation by ATP-dependent Ca2+ uptake. The inhibition of Ca2+ accumulation was proportional to the external Na+ level. Na+/Ca2+ exchange was inhibited by monensin, tetracaine and chlorpromazine, whereas ATP-dependent Ca2+ transport was inhibited by orthovanadate, tetracaine and chlorpromazine. Oligomycin had no effect on either system. These results suggest that in the parotid gland cellular free Ca2+ is extruded mainly by an ATP-dependent Ca2+ transport system, and Na+/Ca2+ exchange may modify the efficacy of that system.  相似文献   

13.
Renal tubular transport and its regulation are reviewed for Na(+) (and Cl(-)), and for fluid and organic anions (including urate). Filtered Na(+) (and Cl(-)) is reabsorbed along the tubules but only in mammals and birds does most reabsorption occur in the proximal tubules. Reabsorption involves active transport of Na(+) and passive reabsorption of Cl(-). The active Na(+) step always involves Na-K-ATPase at the basolateral membrane, but the entry step at luminal membrane varies among tubule segments and among vertebrate classes (except for Na(+)-2Cl(-)-K(+) cotransporter in diluting segment). Regulation can involve intrinsic, neural and endocrine factors. Proximal tubule fluid reabsorption is dependent on Na(+) reabsorption in all vertebrates studied, except ophidian reptiles. Fluid secretion occurs in glomerular and aglomerular fishes, reptiles and even mammals, but its significance is not always clear. A non-specific transport system for net secretion of organic anions (OAs) exists in the proximal renal tubules of almost all vertebrates. Net transepithelial secretion involves: (1) transport into the cells at the basolateral side against an electrochemical gradient by a tertiary active transport process, in which the final step involves OA/alpha-ketoglutarate exchange and (2) movement out of the cells across the luminal membrane down an electrochemical gradient by unknown carrier-mediated process(es). Regulation may involve protein kinase C and mitogen-activated protein kinase. Urate is net secreted in the proximal tubules of birds and reptiles. This process is urate-specific in reptiles but in birds, it may involve both a urate-specific system and the general OA system.  相似文献   

14.
Sodium-dependent dicarboxylate transporters located in the basolateral membrane (NaDC-3) of renal proximal tubule cells maintain the driving force for exchange of organic anions and drugs against alpha-ketoglutarate via organic anion transporters OAT1 and OAT3. So far, information on direct interaction of drugs with the cloned NaDC-3 was missing. Here we tested the interaction of non-steroidal anti-inflammatory drugs (NSAIDs) and benzylpenicillin with NaDC-3 cloned from winter flounder (fNaDC-3) and human (hNaDC-3) kidneys. Flufenamate and benzylpenicillin inhibited [14C]succinate uptake in oocytes expressing fNaDC-3. Flufenamate elicited Na(+)-dependent currents in oocytes expressing fNaDC-3 with a reversal potential around -60 mV. Raising extracellular K+ concentration depolarized fNaDC3-expressing oocytes more in the presence of flufenamate than in its absence, an effect not seen with water-injected control oocytes. These findings suggest that flufenamate via interaction with fNaDC-3 increased the K+ conductance. Acetylsalicylate, indomethacin, and salicylate showed small potential-dependent inward currents in fNaDC-3 but not in hNaDC-3 expressing oocytes. Benzylpenicillin induced voltage-dependent inward currents which were Na(+)-dependent in oocytes expressing fNaDC-3. The currents were, however, much smaller than those induced by succinate, reflecting probably a low fit of the monovalent benzylpenicillin to the dicarboxylate binding site. The data show hitherto unknown effects of monovalent anionic drugs on a transporter for divalent di- and tricarboxylates.  相似文献   

15.
A major system for net transepithelial secretion of a wide range of hydrophobic organic anions (OAs) exists in the proximal renal tubules of almost all vertebrates. This process involves transport into the cells against an electrochemical gradient at the basolateral membrane and movement from the cells into the lumen down an electrochemical gradient. Transport into the cells at the basolateral membrane, which is the dominant, rate-limiting step, is a tertiary active transport process, the final step which involves countertransport of the OA into the cells against its electrochemical gradient in exchange for alpha-ketoglutarate moving out of the cells down its electrochemical gradient. The outwardly directed gradient for alpha-ketoglutarate is maintained by metabolism ( approximately 40%) and by transport into the cells across both the basolateral and luminal membranes by separate sodium-dicarboxylate cotransporters ( approximately 60%). The inwardly directed sodium gradient driving alpha-ketoglutarate uptake is maintained by the basolateral Na(+)-K(+)-ATPase, the primary energy-requiring transport step in the total tertiary process. The basolateral OA/alpha-ketoglutarate exchange process now appears to be physiologically regulated by several factors in mammalian tubules, including peptide hormones (e.g., bradykinin) and the autonomic nervous system acting via protein kinase C (PKC) pathways and epidermal growth factor (EGF) working via the mitogen-activated protein kinase (MAPK) pathway.  相似文献   

16.
Biotin transport was studied using brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex. An inwardly directed Na+ gradient stimulated biotin uptake into brush-border membrane vesicles and a transient accumulation of the anion against its concentration gradient was observed. In contrast, uptake of biotin by basolateral membrane vesicles was found to be Na+-gradient insensitive. Generation of a negative intravesicular potential by valinomycin-induced K+ diffusion potentials or by the presence of Na+ salts of anions of different permeabilities enhanced biotin uptake by brush-border membrane vesicles, suggesting an electrogenic mechanism. The Na+ gradient-dependent uptake of biotin into brush-border membrane vesicles was saturable with an apparent Km of 28 microM. The Na+-dependent uptake of tracer biotin was significantly inhibited by 50 microM biotin, and thioctic acid but not by 50 microM L-lactate, D-glucose, or succinate. Finally, the existence in both types of membrane vesicles of a H+/biotin- cotransport system could not be demonstrated. These results are consistent with a model for biotin reabsorption in which the Na+/biotin- cotransporter in luminal membranes provides the driving force for uphill transport of this vitamin.  相似文献   

17.
The dependence on Na+, K+, and Cl- of uptake and accumulation of [3H]noradrenaline was studied in plasma membrane vesicles isolated from PC-12 pheochromocytoma cells. Plasma membrane vesicles accumulated [3H]noradrenaline when an inward-directed gradient for Na+ and an outward-directed gradient for K+ were imposed across the vesicle membrane. Under these conditions, initial rates of uptake of [3H]noradrenaline were saturable (Km = 0.14 microM) and inhibited by a series of substrates and inhibitors of "uptake". The IC50 values were positively correlated with those for inhibition of uptake into intact PC-12 cells. Uptake and accumulation of [3H]noradrenaline in plasma membrane vesicles were absolutely dependent on external Na+ and Cl-; they were dependent on an inwardly directed gradient for Na+ but less dependent on an inwardly directed gradient for Cl-. Internal K+ strongly enhanced uptake and accumulation of [3H]noradrenaline. Rb+, but not Li+, had the capacity to replace internal K+. Two explanations are proposed for this effect of internal K+: (a) creation of a K+ diffusion potential (inside negative) provides a driving force for inward transport, and/or (b) K+ increases the turnover rate by formation of a highly mobile potassium-carrier complex. A hypothetical scheme for the transport of noradrenaline is presented.  相似文献   

18.
The cation specificity and possible exchange modes of the Na+:CO3(2-):HCO3- cotransporter were evaluated by use of basolateral membrane vesicles isolated from rabbit renal cortex. External Li+ inhibited HCO3- gradient-stimulated 22Na uptake, indicating that Li+ interacts with the Na+:CO3(2-):HCO3- cotransporter. No interaction with K+, choline, Rb+, Cs+, or NH4+ could be similarly detected. Imposing an outward Li+ gradient caused quenching of acridine orange fluorescence in the presence but not in the absence of HCO3-, suggesting that Li+:base cotransport takes place via the Na+:CO3(2-):HCO3- cotransporter. Imposing an outward gradient of unlabeled Na+ stimulated the initial rate of 22Na uptake and induced its transient uphill accumulation, indicating Na(+)-Na+ exchange. Na(+)-Na+ exchange was observed in the presence but not in the absence of HCO3- and was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), suggesting that it occurs via the Na+:CO3(2-):HCO3- cotransporter. Similarly, an outward Li+ gradient stimulated uphill 22Na accumulation, indicating Na(+)-Li+ exchange. Na(+)-Li+ exchange was observed in the presence but not in the absence of HCO3-, and was inhibited by DIDS, suggesting that it also occurs via the Na+:CO3(2-):HCO3- cotransporter. Both Na(+)-Na+ and Li(+)-Na+ exchange modes were sensitive to inhibition by harmaline but not by amiloride. We conclude that Li+ is an alternative substrate for the renal Na+:CO3(2-):HCO3- cotransporter. Transport modes of the system include cation:base cotransport and HCO3-dependent cation-cation exchange.  相似文献   

19.
Characteristics of 22Na+ fluxes through Na+ channels in luminal-membrane vesicles isolated from either pars recta or pars convoluta of rabbit proximal tubule were studied. In NaCl-loaded vesicles from pars recta, transient accumulation of 22Na+ is observed, which is inhibited by amiloride. The isotope accumulation is driven by an electrical diffusion potential as shown in experiments using either these membrane vesicles loaded with different anions, or an outwardly directed K+ gradient with a K+ ionophore valinomycin. The vesicles containing the channel show a cation selectivity with the order Li+ greater than Na+ greater than K+. The amiloride-sensitive 22Na+ flux is dependent on intravesicular Ca2+. In NaCl-loaded vesicles from pars convoluta, no overshoot for 22Na+ uptake is observed. Furthermore, addition of amiloride to the incubation medium did not influence the uptake of 22Na+ in these vesicle preparations. It is concluded that Na+ channels are only present in pars recta of rabbit proximal tubule.  相似文献   

20.
Na uptake studies were performed in order to examine the activity of a Na/H exchanger in basolateral membrane vesicles isolated from rat jejunum. Experiments were carried out under voltage-clamped conditions in order to avoid electrodiffusional ionic movements. 1 mM Na uptake was found to be enhanced by an outward proton gradient and its initial rate was further increased by the presence of monensin or nigericin. The pH gradient-driven Na uptake was inhibited by 2 mM amiloride and unaffected by 0.1 mM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. The initial rate of the proton gradient-induced Na uptake was saturable with respect to external Na, with a Km of 13.6 +/- 1.4 mM and a Vmax of 35.4 +/- 2.2 nmol/mg protein per min. Li competed with Na for the exchange process, whereas K, Rb, Cs, tetramethylammonium had no effect. We conclude that rat jejunal basolateral membrane contains a Na/H exchanger whose properties are similar to those of the antiporter identified in the brush-border membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号