首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Opening of permeability transition (PT) pores in the mitochondrial inner membrane causes the mitochondrial permeability transition (MPT) and leads to mitochondrial swelling, membrane depolarization, and release of intramitochondrial solutes. Here, our aim was to develop high-throughput assays using a fluorescence plate reader to screen potential inducers and blockers of the MPT. Isolated rat liver mitochondria (0.5 mg/ml) were incubated in multiwell plates with tetramethylrhodamine methyl ester (TMRM, 1 microM), a potential-indicating fluorophore, and Fluo-5N (1 microM), a low-affinity Ca(2+) indicator. Incubation led to mitochondrial polarization, as indicated by uncoupler-sensitive quenching of the red TMRM fluorescence. CaCl(2) (100 microM) addition led to ruthenium red-sensitive mitochondrial Ca(2+) uptake, as indicated by green Fluo-5N fluorescence. After Ca(2+) accumulation, mitochondria depolarized, released Ca(2+) into the medium, and began to swell. This swelling was monitored as a decrease in light absorbance at 620 nm. Swelling, depolarization, and Ca(2+) release were prevented by cyclosporin A (1 microM), confirming that these events represented the MPT. Measurements of Ca(2+), mitochondrial membrane potential, and swelling could be made independently from the same wells without cross interference, and all three signals could be read from every well of a 48-well plate in about 1 min. In other experiments, mitochondria were ester-loaded with carboxydichlorofluorescein (carboxy-DCF) during the isolation procedure. Release of carboxy-DCF after PT pore opening led to an unquenching of green carboxy-DCF fluorescence occurring simultaneously with swelling. By combining measurements of carboxy-DCF release, Ca(2+) uptake, membrane potential, and swelling, MPT inducers and blockers can be distinguished from uncouplers, respiratory inhibitors, and blockers of Ca(2+) uptake. This high-throughput multiwell assay is amenable for screening panels of compounds for their ability to promote or block the MPT.  相似文献   

2.
A fluorometric assay for mitochondrial membrane potential in permeabilized yeast cells has been developed. This method involves permeabilizing the plasma membrane and measuring the distribution of a mitochondrial membrane potential sensitive probe 3,3'-dipropylthiadicarbocyanine iodide (DiSC(3)(5); DiSC(3)). In permeabilized cells, DiSC(3) fluorescence decreased when introduced into energized mitochondria and increased three- to sixfold when the mitochondrial membrane potential was dissipated by the chemical uncoupler carbonylcyanide m-chlorophenyl hydrazone. Plasma membrane potential was abolished by permeabilization, as shown by a lack of polarization of the plasma membrane induced by K(+) and glucose. Uncoupling protein 1 (UCP1), a mitochondrial H(+) transporter, was used as a model for method validation. The fluorescence intensity responded vigorously to specific modulators in UCP1-expressing cells. This method has been adapted as a high-throughput assay to screen for modulators of mitochondrial membrane potential.  相似文献   

3.
Mutations in mitochondrial genes cause mitochondrial genetic disease, which is often associated with deficiency of the mitochondrial membrane potential (MMP). We present a high-throughput method for measuring MMP in intact neural cells using TMRM, a well-known potentiometric dye, in a 48-well plate format. Addition of known MMP depolarizing agents, FCCP or DNP, resulted in a time- and concentration-dependent decrease in fluorescence, which was saturable, whereas the addition of drugs that affect non-mitochondrial properties did not. A cell line deficient in mtDNA had decreased fluorescence, which was not further depleted by a depolarizing agent. The high-throughput results are similar to those produced by more time-consuming and low-throughput flow cytometry or microscopy methods. This plate-based system could facilitate the identification of cell-permeant small molecules (i.e., drugs) that modify MMP, which could be used to enhance mitochondrial function, and also for screening small populations of neural cells for mutations in nuclear or mtDNA genes that decrease MMP.  相似文献   

4.
Mitochondrial dysfunction causes dozens of debilitating diseases, and is implicated in the etiology of type 2 diabetes, Parkinson's, and Alzheimer's diseases, among others. However, development of mitochondrially targeted therapeutic agents has been impeded by the lack of high-throughput screening techniques that are capable of distinguishing in intact cells the mitochondrial membrane potential (deltapsi(m)) from the plasma membrane potential, (deltapsi(p)). We report here a fluorescence resonance energy transfer (FRET) assay that specifically monitors deltapsi(m) that is not confounded by background signal arising from potentiometric dye responding to deltapsi(p). The technique relies on energy transfer between nonyl acridine orange (NAO), which stains diphosphatidyl glycerol (cardiolipin) that is indigenous to the inner mitochondrial membrane, and tetramethylrhodamine methyl ester (TMR), a potentiometric dye that is sequestered by mitochondria as a Nernstian function of deltapsi(m) and concentration. FRET occurs only when both dyes co-localize to the mitochondria, and results in quenching of NAO emission by TMR in proportion to deltapsi(m). Validation studies using compounds with well-characterized mitochondrial effects, including oligomycin, CCCP+, bongkrekic acid, cyclosporin A, nigericin, ADP, and ruthenium red, demonstrate that the FRET-based deltapsi(m) assay responds in accord with the known pharmacology. Validation studies assessing the suitability of the technique for high-throughput compound screening indicate that the assay provides a sensitive and robust assessment not only of mitochondrial integrity in situ, but also, when used in conjunction with agents such as cyclosporin A, an indicator of permeability transition.  相似文献   

5.
Decreases in mitochondrial membrane potential (MMP) have been associated with mitochondrial dysfunction that could lead to cell death. The MMP is generated by an electrochemical gradient via the mitochondrial electron transport chain coupled to a series of redox reactions. Measuring the MMP in living cells is commonly used to assess the effect of chemicals on mitochondrial function; decreases in MMP can be detected using lipophilic cationic fluorescent dyes. To identify an optimal dye for use in a high-throughput screening (HTS) format, we compared the ability of mitochondrial membrane potential sensor (Mito-MPS), 5,5',6,6'-tetrachloro-1,1',3,3' tetraethylbenzimidazolylcarbocyanine iodide, rhodamine 123, and tetramethylrhodamine to quantify a decrease in MMP in chemically exposed HepG2 cells cultured in 1,536-well plates. Under the conditions used, the optimal dye for this purpose is Mito-MPS. Next, we developed and optimized a homogenous cell-based Mito-MPS assay for use in 1,536-well plate format and demonstrated the utility of this assay by screening 1,280 compounds in the library of pharmacologically active compounds in HepG2 cells using a quantitative high-throughput screening platform. From the screening, we identified 14 compounds that disrupted the MMP, with half-maximal potencies ranging from 0.15 to 18 μM; among these, compound clusters that contained tyrphostin and 3'-substituted indolone analogs exhibited a structure-activity relationship. Our results demonstrate that this homogenous cell-based Mito-MPS assay can be used to evaluate the ability of large numbers of chemicals to decrease mitochondrial function.  相似文献   

6.
De Giorgi F  Lartigue L  Ichas F 《Cell calcium》2000,28(5-6):365-370
Kinetic fluorescence imaging and the potentiometric probe tetramethylrhodamine methyl ester (TMRM) were used to evoke and detect changes in membrane potential (delta Psi(m)) of individual mitochondria in living cells. As a combined effect of preferential TMRM accumulation in mitochondria, and of TMRM photoactivation, individual organelles displayed sharp transient depolarizations caused by local reactive oxygen species (ROS)-mediated gatings of the mitochondrial permeability transition pore (PTP). In COS-7 cells, such directed repetitive gatings of the PTP gave rise to stochastic delta Psi(m)flickering at the level of individual organelles, but also to prominent synchronous delta Psi(m)transitions in whole subgroups of the mitochondrial population, indicative of the existence of an underlying electrically coupled mitochondrial network. In single cells, this network could comprise as much as 65% of the total mitochondrial population, a nd exhibited a high plasticity with mitochondrial units spontaneously connecting to and disconnecting from the coupled structure within seconds. These results indicate that in resting cells, the mitochondrial network is a dynamic proton-conducting structure capable to commute and coordinate electrical signals generated by the PTP.  相似文献   

7.
In this study, the authors compared and evaluated 4 membrane potential probes in the same cellular assay: the oxonol dye DiBAC(4)(3), the FLIPR membrane potential (FMP) dye (Molecular Devices), and 2 novel fluorescence resonance energy transfer (FRET) dye systems from PanVera [CC2-DMPE/DiSBAC(2)(3)] and Axiom [DiSBAC(1)(3)/DiSBAC(1)(5)]. The kinetic parameters of each membrane probe were investigated in RBL-2H3 cells expressing an endogenous inward rectifier potassium channel (IRK1). The FMP dye presented the highest signal over background ratio whereas the FRET dyes from PanVera gave the fastest response. The determination of IC(50) values for 8 different channel modulators indicated a good correlation between the 4 membrane probe systems. The compound-dye interaction was evaluated in the presence of compounds at 10 muM and clearly indicated no effect on the FMP or the PanVera donor dye, whereas some major interference with the oxonol probes was observed. Using a cell permeabilization assay in the presence of gramicidin, the authors concluded that the FRET dyes from PanVera and the FMP dye are unable to measure the gramicidin-induced cell membrane hyperpolarizations. The 4 dye systems were investigated under high-throughput screening (HTS) conditions, and their respective Z' parameter was determined. The characteristics of each dye system and its potential use in HTS assays is discussed.  相似文献   

8.
Overexpression of the anti-apoptotic Bcl-2 family proteins occurs commonly in human cancers. Bfl-1 is highly expressed in some types of malignant cells, contributing significantly to tumor cell survival and chemoresistance. Therefore, it would be desirable to have chemical antagonists of Bfl-1. To this end, we devised a fluorescence polarization assay (FPA) using Bfl-1 protein and fluorescein-conjugated Bid BH3 peptide, which was employed for high-throughput screening of chemical libraries. Approximately 66 000 compounds were screened for the ability to inhibit BH3 peptide binding to Bfl-1, yielding 14 reproducible hits with ≥50% displacement. After dose-response analysis and confirmation using a secondary assay based on time-resolved fluorescence resonance energy transfer (TR-FRET), two groups of Bfl-1-specific inhibitors were identified, including chloromaleimide and sulfonylpyrimidine series compounds. FPAs generated for each of the six anti-apoptotic Bcl-2 proteins demonstrated selective binding of both classes of compounds to Bfl-1. Analogs of the sulfonylpyrimidine series were synthesized and compared with the original hit for Bfl-1 binding by both FPAs and TR-FRET assays. The resulting structure-activity relation analysis led to the chemical probe compound CID-2980973 (ML042). Collectively, these findings demonstrate the feasibility of using the HTS assay for discovery of selective chemical inhibitors of Bfl-1.  相似文献   

9.
Permeant cationic fluorescent probes are shown to be selectively accumulated by the mitochondria of living cells. Mitochondria-specific interaction of such molecules is apparently dependent on the high trans- membrane potential (inside negative) maintained by functional mitochondria. Dissipation of the mitochondrial trans-membrane and potential by ionophores or inhibitors of electron transport eliminates the selective mitochondrial association of these compounds. The application of such potential-dependent probes in conjunction with fluorescence microscopy allows the monitoring of mitochondrial membrane potential in individual living cells. Marked elevations in mitochondria- associated probe fluorescence have been observed in cells engaged in active movement. This approach to the analysis of mitochondrial membrane potential should be of value in future investigations of the control of energy metabolism and energy requirements of specific biological functions at the cellular level.  相似文献   

10.
Mitochondrial membrane potential (ΔΨm) is critical for maintaining the physiological function of the respiratory chain to generate ATP. A significant loss of ΔΨm renders cells depleted of energy with subsequent death. Reactive oxygen species (ROS) are important signaling molecules, but their accumulation in pathological conditions leads to oxidative stress. The two major sources of ROS in cells are environmental toxins and the process of oxidative phosphorylation. Mitochondrial dysfunction and oxidative stress have been implicated in the pathophysiology of many diseases; therefore, the ability to determine ΔΨm and ROS can provide important clues about the physiological status of the cell and the function of the mitochondria. Several fluorescent probes (Rhodamine 123, TMRM, TMRE, JC-1) can be used to determine Δψm in a variety of cell types, and many fluorescence indicators (Dihydroethidium, Dihydrorhodamine 123, H2DCF-DA) can be used to determine ROS. Nearly all of the available fluorescence probes used to assess ΔΨm or ROS are single-wavelength indicators, which increase or decrease their fluorescence intensity proportional to a stimulus that increases or decreases the levels of ΔΨm or ROS. Thus, it is imperative to measure the fluorescence intensity of these probes at the baseline level and after the application of a specific stimulus. This allows one to determine the percentage of change in fluorescence intensity between the baseline level and a stimulus. This change in fluorescence intensity reflects the change in relative levels of ΔΨm or ROS. In this video, we demonstrate how to apply the fluorescence indicator, TMRM, in rat cortical neurons to determine the percentage change in TMRM fluorescence intensity between the baseline level and after applying FCCP, a mitochondrial uncoupler. The lower levels of TMRM fluorescence resulting from FCCP treatment reflect the depolarization of mitochondrial membrane potential. We also show how to apply the fluorescence probe H2DCF-DA to assess the level of ROS in cortical neurons, first at baseline and then after application of H2O2. This protocol (with minor modifications) can be also used to determine changes in ∆Ψm and ROS in different cell types and in neurons isolated from other brain regions.  相似文献   

11.
An automated fluorescence microscopy assay using a nontoxic cholesterol binding protein, toxin domain 4, (D4), was developed in order to identify chemical compounds modifying intracellular cholesterol metabolism and distribution. Using this method, we screened a library of 1,056 compounds and identified 35 compounds that decreased D4 binding to the cell surface. Among them, 8 compounds were already reported to alter the biosynthesis or the intracellular distribution of cholesterol. The remaining 27 hit compounds were further analyzed biochemically and histochemically. Cell staining with another fluorescent cholesterol probe, filipin, revealed that 17 compounds accumulated cholesterol in the late endosomes. Five compounds decreased cholesterol biosynthesis, and two compounds inhibited the binding of D4 to the membrane. This visual screening method, based on the cholesterol-specific probe D4 in combination with biochemical analyses, is a cell-based, sensitive technique for identifying new chemical compounds and modifying cholesterol distribution and metabolism. Furthermore, it is suitable for high-throughput analysis for drug discovery.  相似文献   

12.
The study investigated the distribution of nitric oxide (NO) within isolated outer hair cells (OHCs) from the cochlea, its relationship to mitochondria and its modulation of mitochondrial function. Using two fluorescent dyes--4,5-diamino-fluorescein diacetate (DAF-2DA), which detects NO, and tetramethyl rhodamine methyl ester (TMRM+), a mitochondrial membrane potential dye--it was found that a relatively greater amount of the DAF fluorescence in OHCs co-localized with mitochondria in comparison to DAF fluorescence in the cytosole. This study also observed reduced mitochondrial membrane potential of OHCs and increased DAF fluorescence following exposure of the cells to noise (120 dB SPL for 4 h) and to an exogenous NO donor, NOC-7 (>350 mm). Antibody label for nitrotyrosine was also increased, indicating NO-related formation of peroxynitrite in both mitochondria and the cytosol. The results suggest that NO may play an important physiological role in regulating OHC energy status and act as a potential agent in OHC pathology.  相似文献   

13.
Drugs are capable of inducing hepatic lipid accumulation. When fat accumulates, lipids are primarily stored as triglycerides which results in steatosis and provides substrates for lipid peroxidation. An in vitro multiparametric flow cytometry assay was performed in HepG2 cells by using fluorescent probes to analyze cell viability (propidium iodide, PI), lipid accumulation (BODIPY493/503), mitochondrial membrane potential (tetramethyl rhodamine methyl ester, TMRM) and reactive oxygen species generation (ROS) (2′,7′-dihydrochlorofluorescein diacetate, DHCF-DA) as functional markers. All the measurements were restricted to live cells by gating the cells that excluded PI or those that exhibited the typical forward and side scatter features of live cells. The assay was qualified by analyzing a number of selected model drugs with a well documented induction of steatosis in vivo using different mechanisms as positive controls and several non-steatosic compounds as negative controls. For the cytometric screening assay, the concentrations tested were up to the corresponding IC10 value determined by the MTT assay. Among the parameters analyzed, increased BODIPY fluorescence was the most sensitive and selective marker of drug-induced steatosis. However, a more consistent predictive approach was the combination of two endpoints: lipid accumulation and ROS generation. The assay correctly identified 100% of steatosis-positive and steatosis-negative compounds, and a high steatosis risk was predicted for amiodarone, doxycycline, tetracycline and valproate treatments at therapeutic doses. The results suggest that this cell-based assay may be a useful approach to identify the potential of drug candidates to induce steatosis.  相似文献   

14.
Three mitochondrial uncoupling proteins (UCP1, 2, 3) have been described. The proton transport activity of UCP1 triggers mitochondrial uncoupling and thermogenesis but the roles of UCP2 and UCP3 remain debated. Accordingly, compounds able to finely control the proton permeability of the mitochondrial inner membrane where and when needed may have enormous practical consequences. Using purified hamster brown adipose tissue UCP1 reconstituted in liposomes, we describe herein a robust assay allowing the measurement of this artificial membrane conductance to protons in a format compatible with high-throughput screening. The assay was initially developed with a known chemical protonophore in an aproteic system. Then, using the proteolipid reconstituted UCP1 preparation, we assessed the assay with known modulators of UCP1, particularly retinoic acid and guanosine 5'-triphosphate. The system was developed for a 96-well plate format. We then exemplified its use by generating primary data on a set of compounds screened in this system. These primary data will open new routes for the search of candidate compounds that will help biochemical studies on UCPs.  相似文献   

15.
To reveal heterogeneity of mitochondrial function on the single-mitochondrion level we have studied the spatiotemporal dynamics of the mitochondrial Ca2+ signaling and the mitochondrial membrane potential using wide-field fluorescence imaging and digital image processing techniques. Here we demonstrate first-time discrete sites--intramitochondrial hotspots--of Ca2+ uptake after Ca2+ release from intracellular stores, and spreading of Ca2+ rise within the mitochondria. The phenomenon was characterized by comparison of observations in intact cells stimulated by ATP and in plasma membrane permeabilized or in ionophore-treated cells exposed to elevated buffer [Ca2+]. The findings indicate that Ca2+ diffuses laterally within the mitochondria, and that the diffusion is limited for shorter segments of the mitochondrial network. These observations were supported by mathematical simulation of buffered diffusion. The mitochondrial membrane potential was investigated using the potentiometric dye TMRM. Irradiation-induced fluctuations (flickering) of TMRM fluorescence showed synchronicity over large regions of the mitochondrial network, indicating that certain parts of this network form electrical syncytia. The spatial extension of these syncytia was decreased by 2-aminoethoxydiphenyl borate (2-APB) or by propranolol (blockers of nonclassical mitochondrial permeabilities). Our data suggest that mitochondria form syncytia of electrical conductance whereas the passage of Ca2+ is restricted to the individual organelle.  相似文献   

16.
Malonyl-CoA decarboxylase (MCD) catalyzes the conversion of malonyl-CoA to acetyl-CoA and thereby regulates malonyl-CoA levels in cells. Malonyl-CoA is a potent inhibitor of mitochondrial carnitine palmitoyltransferase-1, a key enzyme involved in the mitochondrial uptake of fatty acids for oxidation. Abnormally high rates of fatty acid oxidation contribute to ischemic damage. Inhibition of MCD leads to increased malonyl-CoA and therefore decreases fatty acid oxidation, representing a novel approach for the treatment of ischemic heart injury. The commonly used MCD assay monitors the production of NADH fluorometrically, which is not ideal for library screening due to potential fluorescent interference by certain compounds. Here we report a luminescence assay for MCD activity. This assay is less susceptible to fluorescent interference by compounds. Furthermore, it is 150-fold more sensitive, with a detection limit of 20 nM acetyl-CoA, compared to 3 μM in the fluorescence assay. This assay is also amenable to automation for high-throughput screening and yields excellent assay statistics (Z′ > 0.8). In addition, it can be applied to the screening for inhibitors of any other enzymes that generate acetyl-CoA.  相似文献   

17.
Resistance to apoptosis is afforded by inhibitor of apoptosis proteins (IAPs) which bind to and inhibit the caspases responsible for cleavage of substrates leading to apoptotic cell death. Smac (or DIABLO), a proapoptotic protein released from the mitochondrial intermembrane space into the cytosol, promotes apoptosis by binding to IAPs, thus reversing their inhibitory effects on caspases. We have developed a high-throughput fluorescence polarization assay utilizing a fluorescein-labeled peptide similar to the "IAP binding" domain of Smac N terminus complexed with the BIR3 domain of X-linked IAP (XIAP) to identify small-molecule mimics of the action of Smac. The IC(50)s of peptides and a tetrapeptidomimetic homologous to the N terminus of Smac demonstrated the specificity and utility of this assay. We have screened the National Cancer Institute "Training Set" of 230 compounds, with well-defined biological actions, and the "Diversity Set" of 2000 chemically diverse structures for compounds which significantly reduced fluorescence polarization. Highly fluorescing or fluorescence-quenching compounds (false positives) were distinguished from those which interfered with Smac peptide binding to the XIAP-BIR3 in a dose-dependent manner (true positives). This robust assay offers potential for high-throughput screening discovery of novel compounds simulating the action of Smac/DIABLO.  相似文献   

18.
Gap junctions coordinate electrical signals and facilitate metabolic synchronization between cells. In this study, the authors have developed a novel assay for the identification of gap junction blockers using fluorescence microscopy imaging-based high-content screening technology. In the assay, the communication between neighboring cells through gap junctions was measured by following the redistribution of a fluorescent marker. The movement of calcein dye from dye-loaded donor cells to dye-free acceptor cells through gap junctions overexpressed on cell surface membranes was monitored using automated fluorescence microscopy imaging in a high-throughput compatible format. The fluorescence imaging technology consisted of automated focusing, image acquisition, image processing, and data mining. The authors have successfully performed a high-throughput screening of a 486,000- compound program with this assay, and they were able to identify false positives without additional experiments. Selective and pharmacologically interesting compounds were identified for further optimization.  相似文献   

19.
UBC13 is a noncanonical ubiquitin conjugating enzyme (E2) that has been implicated in a variety of cellular signaling processes due to its ability to catalyze formation of lysine 63-linked polyubiquitin chains on various substrates. In particular, UBC13 is required for signaling by a variety of receptors important in immune regulation, making it a candidate target for inflammatory diseases. UBC13 is also critical for double-strand DNA repair and thus a potential radiosensitizer and chemosensitizer target for oncology. The authors developed a high-throughput screening (HTS) assay for UBC13 based on the method of time-resolved fluorescence resonance energy transfer (TR-FRET). The TR-FRET assay combines fluorochrome (Fl)-conjugated ubiquitin (fluorescence acceptor) with terbium (Tb)-conjugated ubiquitin (fluorescence donor), such that the assembly of mixed chains of Fl- and Tb-ubiquitin creates a robust TR-FRET signal. The authors defined conditions for optimized performance of the TR-FRET assay in both 384- and 1536-well formats. Chemical library screens (total 456 865 compounds) were conducted in high-throughput mode using various compound collections, affording superb Z' scores (typically >0.7) and thus validating the performance of the assays. Altogether, the HTS assays described here are suitable for large-scale, automated screening of chemical libraries in search of compounds with inhibitory activity against UBC13.  相似文献   

20.
In today's high-throughput screening (HTS) environment, an increasing number of assay detection technologies are routinely utilized in lead finding programs. Because of the relatively broad applicability of several of these technologies, one is often faced with a choice of which technology to utilize for a specific assay. The aim of this study was to address the question of whether the same compounds would be identified from screening a set of samples in three different versions of an HTS assay. Here, three different versions of a tyrosine kinase assay were established using scintillation proximity assay (SPA), homogeneous time-resolved fluorescence resonance energy transfer (HTR-FRET), and fluorescence polarization (FP) technologies. In this study, 30,000 compounds were evaluated in each version of the kinase assay in primary screening, deconvolution, and dose-response experiments. From this effort, there was only a small degree of overlap of active compounds identified subsequent to the deconvolution experiment. When all active compounds were then profiled in all three assays, 100 and 101 active compounds were identified in the HTR-FRET and FP assays, respectively. In contrast, 40 compounds were identified in the SPA version of the kinase assay, whereas all of these compounds were detected in the HTR-FRET assay only 35 were active in the FP assay. Although there was good correlation between the IC(50) values obtained in the HTR-FRET and FP assays, poor correlations were obtained with the IC(50) values obtained in the SPA assay. These findings suggest that significant differences can be observed from HTS depending on the assay technology that is utilized, particularly in assays with high hit rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号