首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA gyrase, a type II topoisomerase that introduces negative supercoils into DNA, is a validated antibacterial drug target. The holoenzyme is composed of 2 subunits, gyrase A (GyrA) and gyrase B (GyrB), which form a functional A(2)B(2) heterotetramer required for bacterial viability. A novel fluorescence polarization (FP) assay has been developed and optimized to detect inhibitors that bind to the adenosine triphosphate (ATP) binding domain of GyrB. Guided by the crystal structure of the natural product novobiocin bound to GyrB, a novel novobiocin-Texas Red probe (Novo-TRX) was designed and synthesized for use in a high-throughput FP assay. The binding kinetics of the interaction of Novo-TRX with GyrB from Francisella tularensis has been characterized, as well as the effect of common buffer additives on the interaction. The assay was developed into a 21-μL, 384-well assay format and has been validated for use in high-throughput screening against a collection of Food and Drug Administration-approved compounds. The assay performed with an average Z' factor of 0.80 and was able to identify GyrB inhibitors from a screening library.  相似文献   

2.
A strategy is described for the development of high-throughput screening assays against targets of unknown function that involves the use of nuclear magnetic resonance (NMR) spectroscopy. Using this approach, molecules that bind to the protein target are identified from an NMR-based screen of a library of substrates, cofactors, and other compounds that are known to bind to many proteins and enzymes. Once a ligand has been discovered, a fluorescent or radiolabeled analog of the ligand is synthesized that can be used in a high-throughput screen. The approach is illustrated in the development of a high-throughput screening assay against HI-0033, a conserved protein from Haemophilus influenzae whose function is currently unknown. Adenosine was found to bind to HI-0033 by NMR, and fluorescent analogs were rapidly identified that bound to HI-0033 in the submicromolar range. Using these fluorescent compounds, a fluorescence polarization assay was developed that is suitable for high-throughput screening and obtaining detailed structure-activity relationships for lead optimization.  相似文献   

3.
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase catalyzes the first physiologically irreversible step in biosynthesis of isoprenoids and sterols from acetyl-CoA. Inhibition of enzyme activity by β-lactone-containing natural products correlates with substantial diminution of sterol synthesis, identifying HMG-CoA synthase as a potential drug target and suggesting that identification of effective inhibitors would be valuable. A visible wavelength spectrophotometric assay for HMG-CoA synthase has been developed. The assay uses dithiobisnitrobenzoic acid (DTNB) to detect coenzyme A (CoASH) release on acetylation of enzyme by the substrate acetyl-CoA, which precedes condensation with acetoacetyl-CoA to form the HMG-CoA product. The assay method takes advantage of the stability of recombinant enzyme in the absence of a reducing agent. It can be scaled down to a 60 μl volume to allow the use of 384-well microplates, facilitating high-throughput screening of compound libraries. Enzyme activity measured in the microplate assay is comparable to values measured by using conventional scale spectrophotometric assays with the DTNB method (412 nm) for CoASH production or by monitoring the use of a second substrate, acetoacetyl-CoA (300 nm). The high-throughput assay method has been successfully used to screen a library of more than 100,000 drug-like compounds and has identified both reversible and irreversible inhibitors of the human enzyme.  相似文献   

4.
Plasmodium falciparum causes severe malaria infections in millions of people every year. The parasite is developing resistance to the most common antimalarial drugs, which creates an urgent need for new therapeutics. A promising and attractive target for antimalarial drug design is the bifunctional enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase (PfGluPho) of P. falciparum, which catalyzes the key step in the parasites' pentose phosphate pathway. In this study, we describe the development of a high-throughput screening assay to identify small-molecule inhibitors of recombinant PfGluPho. The optimized assay was used to screen three small-molecule compound libraries-namely, LOPAC (Sigma-Aldrich, 1280 compounds), Spectrum (MicroSource Discovery Systems, 1969 compounds), and DIVERSet (ChemBridge, 49 971 compounds). These pilot screens identified 899 compounds that inhibited PfGluPho activity by at least 50%. Selected compounds were further studied to determine IC(50) values in an orthogonal assay, the type of inhibition and reversibility, and effects on P. falciparum growth. Screening results and follow-up studies for selected PfGluPho inhibitors are presented. Our high-throughput screening assay may provide the basis to identify novel and urgently needed antimalarial drugs.  相似文献   

5.
UBC13 is a noncanonical ubiquitin conjugating enzyme (E2) that has been implicated in a variety of cellular signaling processes due to its ability to catalyze formation of lysine 63-linked polyubiquitin chains on various substrates. In particular, UBC13 is required for signaling by a variety of receptors important in immune regulation, making it a candidate target for inflammatory diseases. UBC13 is also critical for double-strand DNA repair and thus a potential radiosensitizer and chemosensitizer target for oncology. The authors developed a high-throughput screening (HTS) assay for UBC13 based on the method of time-resolved fluorescence resonance energy transfer (TR-FRET). The TR-FRET assay combines fluorochrome (Fl)-conjugated ubiquitin (fluorescence acceptor) with terbium (Tb)-conjugated ubiquitin (fluorescence donor), such that the assembly of mixed chains of Fl- and Tb-ubiquitin creates a robust TR-FRET signal. The authors defined conditions for optimized performance of the TR-FRET assay in both 384- and 1536-well formats. Chemical library screens (total 456 865 compounds) were conducted in high-throughput mode using various compound collections, affording superb Z' scores (typically >0.7) and thus validating the performance of the assays. Altogether, the HTS assays described here are suitable for large-scale, automated screening of chemical libraries in search of compounds with inhibitory activity against UBC13.  相似文献   

6.
Tankyrase, a member of human PARP protein superfamily, catalyzes a covalent post-translational modification of substrate proteins. This modification, poly(ADP-ribos)ylation, leads to changes in protein interactions and modifies downstream signaling events. Tankyrase 1 is a potential drug target due to its functions in telomere homeostasis and in Wnt signaling. We describe here optimization and application of an activity-based homogenous assay for tankyrase inhibitors in a high-throughput screening format. The method measures the consumption of substrate by the chemical conversion of the remaining NAD(+) into a stable fluorescent condensation product. Conditions were optimized to measure the enzymatic auto-modification of a recombinant catalytic fragment of tankyrase 1. The fluorescence assay is inexpensive, operationally easy and performs well according to the statistical analysis (Z'= 0.7). A validatory screen with a natural product library confirmed suitability of the assay for finding new tankyrase inhibitors. Flavone was the most potent (IC(50)=325 nM) hit from the natural compounds. A flavone derivative, apigenin, and isopropyl gallate showed potency on the micromolar range, but displayed over 30-fold selectivity for tankyrase over the studied isoenzymes PARP1 and PARP2. The assay is robust and will be useful for screening new tankyrase inhibitors.  相似文献   

7.
Small molecule inhibitors of proteins are invaluable tools in research and as starting points for drug development. However, their screening can be tedious, as most screening methods have to be tailored to the corresponding drug target. Here, we describe a detailed protocol for a modular and generally applicable assay for the identification of small organic compounds that displace an aptamer complexed to its target protein. The method relies on fluorescence-labeled aptamers and the increase of fluorescence polarization upon their binding to the target protein. The assay has high Z'-factors, making it compatible with high-throughput screening. It allows easy automation, making fluorescence readout the time-limiting step. As aptamers can be generated for virtually any protein target, the assay allows identification of small molecule inhibitors for targets or individual protein domains for which no functional screen is available. We provide the step-by-step protocol to screen for antagonists of the cytohesin class of small guanosine exchange factors.  相似文献   

8.
Glutamate carboxypeptidase II (GCPII) is an important target for therapeutic and diagnostic interventions aimed at prostate cancer and neurologic disorders. Here we describe the development and optimization of a high-throughput screening (HTS) assay based on fluorescence polarization (FP) that facilitates the identification of novel scaffolds inhibiting GCPII. First, we designed and synthesized a fluorescence probe based on a urea-based inhibitory scaffold covalently linked to a Bodipy TMR fluorophore (TMRGlu). Next, we established and optimized conditions suitable for HTS and evaluated the assay robustness by testing the influence of a variety of physicochemical parameters (e.g., pH, temperature, time) and additives. Using known GCPII inhibitors, the FP assay was shown to be comparable to benchmark assays established in the field. Finally, we evaluated the FP assay by HTS of a 20 000-compound library. The novel assay presented here is robust, highly reproducible (Z' = 0.82), inexpensive, and suitable for automation, thus providing an excellent platform for HTS of small-molecule libraries targeting GCPII.  相似文献   

9.
Multidrug-resistant tuberculosis (MDR-TB) and TB–HIV co-infection have become a great threat to global health. However, the last truly novel drug that was approved for the treatment of TB was discovered 40?years ago. The search for new effective drugs against TB has never been more intensive. Natural products derived from microbes and medicinal plants have been an important source of TB therapeutics. Recent advances have been made to accelerate the discovery rate of novel TB drugs including diversifying strategies for environmental strains, high-throughput screening (HTS) assays, and chemical diversity. This review will discuss the challenges of finding novel natural products with anti-TB activity from marine microbes and plant medicines, including biodiversity- and taxonomy-guided microbial natural products library construction, target- and cell-based HTS, and bioassay-directed isolation of anti-TB substances from traditional medicines.  相似文献   

10.
Nicotinamide adenine dinucleotide (NAD) plays a crucial role in many cellular processes. As the rate-limiting enzyme of the predominant NAD biosynthesis pathway in mammals, nicotinamide phosphoribosyltransferase (Nampt) regulates the cellular NAD level. Tumor cells are more sensitive to the NAD levels, making them more susceptible to Nampt inhibition than their nontumorigenic counterparts. Experimental evidence has indicated that Nampt might have proangiogenic activity and supports the growth of some tumors, so Nampt inhibitors may be promising as antitumor agents. However, only four Nampt inhibitors have been reported, and no high-throughput screening (HTS) strategy for Nampt has been proposed to date, largely limiting the drug discovery targeting Nampt. Therefore, the development of a robust HTS strategy for Nampt is both imperative and significant. Here we developed a fluorometric method for a Nampt activity assay by measuring the fluorescence of nicotinamide mononucleotide (NMN) derivative resulting from the enzymatic product NMN through simple chemical reactions. Then we set up an HTS system after thorough optimizations of this method and validated that it is feasible and effective through a pilot screening on a small library. This HTS system should expedite the discovery of Nampt inhibitors as antitumor drug candidates.  相似文献   

11.
The human mitochondrial peptide deformylase (HsPDF) provides a potential new target for broadly acting antiproliferative agents. To identify novel nonpeptidomimetic and nonhydroxamic acid-based inhibitors of HsPDF, the authors have developed a high-throughput screening (HTS) strategy using a fluorescence polarization (FP)-based binding assay as the primary assay for screening chemical libraries, followed by an enzymatic-based assay to confirm hits, prior to characterization of their antiproliferative activity against established tumor cell lines. The authors present the results and performance of the established strategy tested in a pilot screen of 2880 compounds and the identification of the 1st inhibitors. Two common scaffolds were identified within the hits. Furthermore, cytotoxicity studies revealed that most of the confirmed hits have antiproliferative activity. These findings demonstrate that the designed strategy can identify novel functional inhibitors and provide a powerful alternative to the use of functional assays in HTS and support the hypothesis that HsPDF inhibitors may constitute a new class of antiproliferative agent.  相似文献   

12.
A simple and rapid screening method for amino acid dehydrogenase (e.g., leucine dehydrogenase, LDH) has been developed. It relies on a competitive relationship between a non-fluorescent Cu(II)–calcein complex and amino acid (e.g., l-2-aminobutyric acid, l-ABA). When ABA was introduced to a Cu(II)–calcein solution, it bound with the Cu(II) ions and this released calcein from the complex, which was detected as strong fluorescence. The principle of this high-throughput screening method was validated by screening an LDH mutant library. Compared with other methods, this method provided much quicker l-ABA detection and screening for leucine dehydrogenase mutations.  相似文献   

13.
14.
Natural products are an inexhaustible source for drug discovery. However, the validation and selection of primary screening assays are vital to guarantee a selection of extracts or molecules with relevant pharmacological action and worthy of following up. The assay must be rapid, simple, easy to implement, and produce quick results and preferably at a low cost. In this work, we developed and validated a colorimetric microtiter assay using the resazurin viability dye. The parameters of the resazurin method for high-throughput screening (HTS) using natural extracts against Aspergillus fumigatus were optimized and set up. The extracts plus RPMI-1640 modified medium containing the spores and 0.002% resazurin were added per well. The fluorescence was read after 24 to 30 h of incubation. The resazurin proved to be as suitable as Alamar Blue for determining the minimal inhibitory concentration of different antifungals against A. fumigatus and effective to analyze fungicidal and fungistatic compounds. An HTS of 12 000 microbial extracts was carried out against two A. fumigatus strains, and 2.7% of the extracts displayed antifungal activity. Our group has been the first to use this methodology for screening a collection of natural extracts to identify compounds with antifungal activity against the medically important human pathogen A. fumigatus.  相似文献   

15.
16.
Posttranslational modifications on the N terminus of histone H3 act in a combinatorial fashion to control epigenetic responses to extracellular stimuli. Lysine-specific demethylase-1 (LSD1) represents an emerging epigenetic target class for the discovery of novel antitumor therapies. In this study, a high-throughput mass spectrometry (HTMS) assay was developed to measure LSD1-catalyzed demethylation of lysine-4 on several H3 substrates. The assay leverages RapidFire chromatography in line with a triple stage quadrupole detection method to measure multiple LSD1 substrate and product reactions from an assay well. This approach minimizes artifacts from fluorescence interference and eliminates the need for antibody specificity to methylated lysines. The assay was robust in a high-throughput screen of a focused library consisting of more than 56,000 unique chemical scaffolds with a median Z′ of 0.76. Validated hits from the primary screen were followed up by successive rounds of virtual and HTMS screening to mine for related structures in a parent library consisting of millions of compounds. The screen resulted in the rapid discovery of multiple chemical classes amenable to medicinal chemistry optimization. This assay was further developed into a generic platform capable of rapidly screening epigenetic targets that use the N-terminal tail of histone H3 as a substrate.  相似文献   

17.
The HIV-1 envelope glycoprotein transmembrane subunit, gp41, mediates the fusion of viral and target cell membranes. The 2 helical regions in the ectodomain of gp41, the N-helix and the C-helix, form a helical bundle complex that has been suggested as a fusion-active conformation. Previously, an enzyme-linked immunosorbent assay (ELISA) method had been established to measure the interaction of 2 helical regions of gp41. In this study, the ELISA method was modified to apply high-throughput screening (HTS) of an organic compound library. A few compounds had been identified to prevent the interaction between 2 helical regions of gp41, and they were further shown to inhibit the gp41-mediated viral infection. In addition, they specifically quenched the fluorescence of tryptophan in the N-helix region, indicating that these compounds bound to the N-helix rather than the C-helix of gp41. These results suggested that this assay method targeting gp41 could be used for HTS of HIV fusion inhibitors.  相似文献   

18.
Transmissible spongiform encephalopathies (TSEs) are fatal, untreatable neurodegenerative diseases associated with the accumulation of a disease-specific form of prion protein (PrP) in the brain. One approach to TSE therapeutics is the inhibition of PrP accumulation. Indeed, many inhibitors of the accumulation of PrP associated with scrapie (PrP(Sc)) in scrapie-infected mouse neuroblastoma cells (ScN(2)a) also have antiscrapie activity in rodents. To expedite the search for potential TSE therapeutic agents, we have developed a high-throughput screening assay for PrP(Sc) inhibitors using ScN(2)a cells in a 96-well format. A library of 2000 drugs and natural products was screened in ScN(2)a cells infected with scrapie strain RML (Chandler) or 22L. Forty compounds were found to have concentrations causing 50% inhibition (IC(50)s) of PrP(Sc) accumulation of 相似文献   

19.
A microbroth chemiluminometric version of the biochemical induction assay (BIA) was developed using a chemiluminescent substrate widely used to detect beta-galactosidase in high-throughput screening (HTS) laboratories. The assay was run in both 96-well and 384-well plate formats using the Zymark RapidPlate liquid handling system to transfer samples and reagents. Chemiluminescence was read using the Victor-2 multilabel counter. The new microbroth chemiluminometric method, the CBIA, allowed rapid screening of samples, crude extracts, and pure compounds for their DNA-damaging effects in bacteria. In screening a small subset of our natural products library samples by the agar plate BIA and the CBIA, the latter yielded a higher hit rate, suggesting it is more sensitive than the agar plate assay. The CBIA was unaffected by the colored samples often encountered during screening of crude natural products extracts.  相似文献   

20.
Plasmodium falciparum is the most prevalent and deadly species of the human malaria parasites, and thioredoxin reductase (TrxR) is an enzyme involved in the redox response to oxidative stress. Essential for P. falciparum survival, the enzyme has been highlighted as a promising target for novel antimalarial drugs. Here we report the discovery and characterization of seven molecules from an antimalarial set of 13533 compounds through single-target TrxR biochemical screens. We have produced high-purity, full-length, recombinant native enzyme from four Plasmodium species, and thioredoxin substrates from P. falciparum and Rattus norvegicus. The enzymes were screened using a unique, high-throughput, in vitro native substrate assay, and we have observed selectivity between the Plasmodium species and the mammalian form of the enzyme. This has indicated differences in their biomolecular profiles and has provided valuable insights into the biochemical mechanisms of action of compounds with proven antimalarial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号