首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The “Havana 425” cultivar of Nicotiana tabacum L. is photodormant. Gibberellins (e.g. 10?5 M GA4 or GA7) can substitute for light in releasing dormancy. Measurements of β-1,3-glucanase activity, mRNA accumulation and the activity of the class I β-1,3-glucanase B promoter indicated that class I β-1,3-glucanases are induced by GA4 in the dark in association with germination. As in the light, this induction occurred prior to endosperm rupture and was localized exclusively in the micropylar region of the endosperm where the radicle will penetrate. Abscisic acid (ABA, 10?5 M) did not appreciably affect GA-induced release of photodormancy or seed-coat rupture, but it delayed endosperm rupture and inhibited the rate of class I β-1,3-glucanase accumulation. Seeds imbibed in the light in the presence of osmotica, e.g. 0.04 M polyethylene glycol 6000, showed delayed seed-coat and endosperm rupture, delayed onset of β-1,3-glucanase induction, and decreased rates of β-1,3-glucanase accumulation. These delays were shortened by GA4 treatment. Our results suggest that GAs and ABA act at two distinct sites during germination and that expansive growth of the embryo acts in two ways by triggering β-1,3-glucanase induction and by providing force for endosperm penetration. This provides further support for our working hypothesis that class I β-1,3-glucanases promote endosperm weakening and facilitate radicle penetration.  相似文献   

2.
'Coat-enhanced' seed dormancy of many dicotyledonous species, including tobacco, is released during after-ripening. Rupture of the endosperm, which is the limiting step in tobacco seed germination, is preceded by induction of class I beta-1,3-glucanase (betaGLU I) in the micropylar endosperm where the radicle will penetrate. Treating after-ripened tobacco seeds with abscisic acid (ABA) delays endosperm rupture and inhibits betaGLU I induction. Sense transformation with a chimeric ABA-inducible betaGLU I transgene resulted in over-expression of betaGLU I in seeds and promoted endosperm rupture of mature seeds and of ABA-treated after-ripened seeds. Taken together, these results provide direct evidence that betaGLU I contributes to endosperm rupture. Over-expression of betaGLU I during germination also replaced the effects of after-ripening on endosperm rupture. This suggests that regulation of betaGLU I by ABA signalling pathways might have a key role in after-ripening.  相似文献   

3.
Little is known about the molecular basis for seed dormancy, after-ripening, and radicle emergence through the covering layers during germination. In tobacco, endosperm rupture occurs after testa rupture and is the limiting step in seed germination. Class I beta-1,3-glucanase (betaGLU I), which is induced in the micropylar endosperm just prior to its penetration by the radicle, is believed to help weaken the endosperm wall. Evidence is presented here for a second site of betaGLU I action during after-ripening. Tobacco plants were transformed with antisense betaGLU I constructs with promoters thought to direct endosperm-specific expression. Unexpectedly, these transformants were unaffected in endosperm rupture and did not exhibit reduced betaGLU I expression during germination. Nevertheless, antisense betaGLU I transformation delayed the onset of testa rupture in light-imbibed, after-ripened seeds and inhibited the after-ripening-mediated release of photodormancy. It is proposed that betaGLU I expression in the dry seed contributes to the after-ripening-mediated release of seed dormancy.  相似文献   

4.
The regulation of water uptake of germinating tobacco (Nicotiana tabacum) seeds was studied spatially and temporally by in vivo (1)H-nuclear magnetic resonance (NMR) microimaging and (1)H-magic angle spinning NMR spectroscopy. These nondestructive state-of-the-art methods showed that water distribution in the water uptake phases II and III is inhomogeneous. The micropylar seed end is the major entry point of water. The micropylar endosperm and the radicle show the highest hydration. Germination of tobacco follows a distinct pattern of events: rupture of the testa is followed by rupture of the endosperm. Abscisic acid (ABA) specifically inhibits endosperm rupture and phase III water uptake, but does not alter the spatial and temporal pattern of phase I and II water uptake. Testa rupture was associated with an increase in water uptake due to initial embryo elongation, which was not inhibited by ABA. Overexpression of beta-1,3-glucanase in the seed-covering layers of transgenic tobacco seeds did not alter the moisture sorption isotherms or the spatial pattern of water uptake during imbibition, but partially reverted the ABA inhibition of phase III water uptake and of endosperm rupture. In vivo (13)C-magic angle spinning NMR spectroscopy showed that seed oil mobilization is not inhibited by ABA. ABA therefore does not inhibit germination by preventing oil mobilization or by decreasing the water-holding capacity of the micropylar endosperm and the radicle. Our results support the proposal that different seed tissues and organs hydrate at different extents and that the micropylar endosperm region of tobacco acts as a water reservoir for the embryo.  相似文献   

5.
Seed germination of Nicotiana tabacum L. cv. Havana 425 is determined by the balance of forces between the growth potential of the embryo and the mechanical restraint of the micropylar endosperm. In contrast to the gibberellin GA4, the brassinosteroid (BR) brassinolide (BL) did not release photodormancy of dark-imbibed photodormant seeds. Brassinolide promoted seedling elongation and germination of non-photodormant seeds, but did not appreciably affect the induction of class I beta-1,3-glucanase (betaGLU I) in the micropylar endosperm. Brassinolide, but not GA4, accelerated endosperm rupture of tobacco seeds imbibed in the light. Brassinolide and GA4 promoted endosperm rupture of dark-imbibed non-photodormant seeds, but only GA4 enhanced betaGLU I induction. Promotion of endosperm rupture by BL was dose-dependent and 0.01 microM BL was most effective. Brassinolide and GA4 promoted abscisic acid (ABA)-inhibited dark-germination of non-photodormant seeds, but only GA4 replaced light in inducing betaGLU I. These results indicate that BRs and GAs promote tobacco seed germination by distinct signal transduction pathways and distinct mechanisms. Gibberellins and light seem to act in a common pathway to release photodormancy, whereas BRs do not release photodormancy. Induction of betaGLU I in the micropylar endosperm and promotion of release of 'coat-enhanced' dormancy seem to be associated with the GA-dependent pathway, but not with BR signalling. It is proposed that BRs promote seed germination by directly enhancing the growth potential of the emerging embryo in a GA- and betaGLU I-independent manner.  相似文献   

6.
Leubner-Metzger G 《Planta》2002,215(6):959-968
'Coat-imposed' seed dormancy of many non-endospermic and endospermic species is released during after-ripening. After-ripening-mediated promotion of tobacco ( Nicotiana tabacum L.) seed germination is mainly due to a promotion of testa rupture and a similar promotion of subsequent endosperm rupture. Treatment of after-ripened or freshly harvested mature seeds with abscisic acid (ABA) delays endosperm rupture and inhibits the induction of class I beta-1,3-glucanase (betaGlu I) in the micropylar endosperm, but does not affect the kinetics of testa rupture. After-ripening-mediated release of photodormancy is correlated with a decreased gibberellin (GA) requirement for testa rupture during dark-imbibition. Reciprocal crosses between wild-type tobacco and sense-betaGlu I transformant lines showed that betaGlu I over-expression in the seed covering layers can replace the promoting effect of after-ripening on testa rupture in light, but only if the mother plant is a sense-betaGlu I line. This maternal effect supports the model of two sites for betaGlu I action: (i) betaGlu I contribution to the after-ripening-mediated release of dormancy in the dry seed state, which is manifested in the promotion and ABA-insensitivity of testa rupture during imbibition. (ii) ABA-sensitive expression of betaGlu I in the micropylar endosperm, which contributes to endosperm rupture. The importance of GA-signaling and testa characteristics appear to be a common feature during the after-ripening-mediated release of coat-imposed dormancy in endospermic and non-endospermic seeds.  相似文献   

7.
Laminarin-hydrolysing activity developed in the endosperm of tomato (Lycopersicon esculentum) seeds following germination. The enzyme was basic (pI>10) and the apparent molecular mass was estimated to be 35 kDa by SDS-PAGE. It was specific for linear beta-1,3-glucan substrates. Laminarin was hydrolysed by the enzyme to yield a mixture of oligoglucosides, indicating that the enzyme had an endo-action pattern. Thus, the enzyme was identified as beta-1,3- endoglucanase (EC 3.2.1.39). The activity of the enzyme developed in the endosperm after radicle protrusion (germination) had occurred and the enzyme activity was localized exclusively in the micropylar region of the endosperm where the radicle had penetrated. When the lateral endosperm region, where no induction of the enzyme occurred, was wounded (cut or punctured), there was a marked enhancement of beta-1,3-glucanase activity. Thus the post-germinative beta-1, 3-glucanase activity in the micropylar endosperm portion might be brought about by wounding resulting from endosperm rupture by radicle penetration.  相似文献   

8.
beta-1,3-Glucanase (EC 3.2.1.39) and chitinase (EC 3.2.1.14) mRNAs, proteins, and enzyme activities were expressed specifically in the micropylar tissues of imbibed tomato (Lycopersicon esculentum Mill.) seeds prior to radicle emergence. RNA hybridization and immunoblotting demonstrated that both enzymes were class I basic isoforms. beta-1,3-Glucanase was expressed exclusively in the endosperm cap tissue, whereas chitinase localized to both endosperm cap and radicle tip tissues. beta-1,3-Glucanase and chitinase appeared in the micropylar tissues of gibberellin-deficient gib-1 tomato seeds only when supplied with gibberellin. Accumulation of beta-1,3-glucanase mRNA, protein and enzyme activity was reduced by 100 microM abscisic acid, which delayed or prevented radicle emergence but not endosperm cap weakening. In contrast, expression of chitinase mRNA, protein, and enzyme activity was not affected by abscisic acid. Neither of these enzymes significantly hydrolyzed isolated tomato endosperm cap cell walls. Although both beta-1,3-glucanase and chitinase were expressed in tomato endosperm cap tissue prior to radicle emergence, we found no evidence that they were directly involved in cell wall modification or tissue weakening. Possible functions of these hydrolases during tomato seed germination are discussed.  相似文献   

9.
We have used isolated spinach (Spinacea oleracea L.) thylakoid membranes to investigate the possible cryoprotective properties of class I [beta]-1,3-glucanase (1,3-[beta]-D-glucan 3-glucanohydrolase; EC 3.2.1.39) and chitinase. Class I [beta]-1,3-glucanase that was purified from tobacco (Nicotiana tabacum L.) protected thylakoids against freeze-thaw injury in our in vitro assays, whereas class I chitinase from tobacco had no effect under the same conditions. The [beta]-1,3-glucanase acted by reducing the influx of solutes into the membrane vesicles during freezing and thereby reduced osmotic stress and vesicle rupture during thawing. Western blots probed with antibodies directed against tobacco class I [beta]-1,3-glucanase showed that in spinach and cabbage (Brassica oleracea L.) leaves an isoform of 41 kD was accumulated during frost hardening under natural conditions.  相似文献   

10.
The endosperm is a barrier for radicle protrusion of many angiosperm seeds. Rupture of the testa (seed coat) and rupture of the endosperm are two sequential events during the germination of Lepidium sativum L. and Arabidopsis thaliana (L.) Heyhn. Abscisic acid (ABA) specifically inhibits the endosperm rupture of these two closely related Brassicaceae species. Lepidium seeds are large enough to allow the direct measurement of endosperm weakening by the puncture force method. We found that the endosperm weakens prior to endosperm rupture and that ABA delays the onset and decreases the rate of this weakening process in a dose-dependent manner. An early embryo signal is required and sufficient to induce endosperm weakening, which afterwards appears to be an organ-autonomous process. Gibberellins can replace this embryo signal; de novo gibberellin biosynthesis occurs in the endosperm and weakening is regulated by the gibberellin/ABA ratio. Our results suggest that the control of radicle protrusion during the germination of Brassicaceae seeds is mediated, at least in part, by endosperm weakening. We propose that Lepidium is an emerging Brassicaceae model system for endosperm weakening and that the complementary advantages of Lepidium and Arabidopsis can be used in parallel experiments to investigate the molecular mechanisms of endosperm weakening.  相似文献   

11.
The endosperm tissue enclosing the radicle tip (endosperm cap) governs radicle emergence in tomato (Lycopersicon esculentum Mill.) seeds. Weakening of the endosperm cap has been attributed to hydrolysis of its mannan-rich cell walls by endo-[beta]-D-mannanase. To test this hypothesis, we measured mannanase activity in tomato endosperm caps from seeds allowed to imbibe under conditions of varying germination rates. Over a range of suboptimal temperatures, mannanase activity prior to radicle emergence increased in accordance with accumulated thermal time. Reduced water potential delayed or prevented radicle emergence but enhanced mannanase activity in the endosperm caps. Abscisic acid did not prevent the initial increase in mannanase activity, although radicle emergence was markedly delayed. Sugar composition and percent mannose (Man) content of endosperm cap cell walls did not change prior to radicle emergence under any condition. Man, glucose, and other sugars were released into the incubation solution by endosperm caps isolated from intact seeds during imbibition. Pregerminative release of Man was suppressed and the release of glucose was enhanced when seeds were incubated in osmoticum or abscisic acid; the opposite occurred in the presence of gibberellin. Thus, whereas sugar release patterns were sensitive to environmental and hormonal factors affecting germination, neither assayable endo-[beta]-D-mannanase activity nor changes in cell wall sugar composition of endosperm caps correlated well with tomato seed germination rates under all conditions.  相似文献   

12.
The mechanism and regulation of coffee seed germination were studied in Coffea arabica L. cv. Rubi. The coffee embryo grew inside the endosperm prior to radicle protrusion and abscisic acid (ABA) inhibited the increase in its pressure potential. There were two steps of endosperm cap weakening. An increase in cellulase activity coincided with the first step and an increase in endo--mannanase (EBM) activity with the second step. ABA inhibited the second step of endosperm cap weakening, presumably by inhibiting the activities of at least two EBM isoforms and/or, indirectly, by inhibiting the pressure force of the radicle. The increase in the activities of EBM and cellulase coincided with the decrease in the force required to puncture the endosperm and with the appearance of porosity in the cell walls as observed by low-temperature scanning electronic microscopy. Tissue printing showed that EBM activity was spatially regulated in the endosperm. Activity was initiated in the endosperm cap whereas later during germination it could also be detected in the remainder of the endosperm. Tissue printing revealed that ABA inhibited most of the EBM activity in the endosperm cap, but not in the remainder of the endosperm. ABA did not inhibit cellulase activity. There was a transient rise in ABA content in the embryo during imbibition, which was likely to be responsible for slow germination, suggesting that endogenous ABA also may control embryo growth potential and the second step of endosperm cap weakening during coffee seed germination.  相似文献   

13.
14.
Completion of germination (radicle emergence) is an all-or-none developmental event for an individual seed. Variation in germination timing among seeds in a population therefore reflects variation among seeds in the rates or extents of physiological or biochemical processes prior to radicle emergence. For tomato (Lycopersicon esculentum Mill.) seeds, correlative evidence suggests that endo-[beta]-mannanase activity weakens the endosperm cap tissue opposite the radicle tip to permit radicle emergence. To test whether endo-[beta]-mannanase activity is causally related to germination rates, we have developed a sensitive assay suitable for use with individual radicle tips or endosperm caps. We show that endo-[beta]-mannanase activity varies at least 100-fold and often more than 1000-fold among individual inbred tomato seeds prior to radicle emergence. Other sources of variation (tissue size and experimental error) were evaluated and cannot account for this range of activity. Endo-[beta]-mannanase activity was generally 10-fold greater in leachates from endosperm caps than from radicle tips. Release of reducing sugars from individual endosperm caps also varied over a considerable (9-fold) range. These extreme biochemical differences among individual tomato seeds prior to radicle emergence indicate that results obtained from bulk samples could be misleading if it is assumed that all seeds exhibit the "average" behavior.  相似文献   

15.
Different isoforms of chitinases and [beta]-1,3-glucanases of tobacco (Nicotiana tabacum cv Samsun NN) were tested for their antifungal activities. The class I, vacuolar chitinase and [beta]-1,3-glucanase isoforms were the most active against Fusarium solani germlings, resulting in lysis of the hyphal tips and in growth inhibition. In additon, we observed that the class I chitinase and [beta]-1,3-glucanase acted synergistically. The class II isoforms of the two hydrolases exhibited no antifungal activity. However, the class II chitinases showed limited growth inhibitory activity in combination with higher amounts of class I [beta]-1,3-glucanase. The class II [beta]-1,3-glucanases showed no inhibitory activity in any combination. In transgenic tobacco plants producing modified forms of either a class I chitinase or a class I [beta]-1,3-glucanase, or both, these proteins were targeted extracellularly. Both modified proteins lack their C-terminal propeptide, which functions as a vacuolar targeting signal. Extracellular targeting had no effect on the specific activities of the chitinase and [beta]-1,3-glucanase enzymes. Furthermore, the extracellular washing fluid (EF) from leaves of transgenic plants expressing either of the secreted class I enzymes exhibited antifungal activity on F. solani germlings in vitro comparable to that of the purified vacuolar class I proteins. Mixing EF fractions from these plants revealed synergism in inhibitory activity against F. solani; the mixed fractions exhibited inhibitory activity similar to that of EF from plants expressing both secreted enzymes.  相似文献   

16.
17.
Arabidopsis thaliana is used as a model system to study triacylglycerol (TAG) accumulation and seed germination in oilseeds. Here, we consider the partitioning of these lipid reserves between embryo and endosperm tissues in the mature seed. The Arabidopsis endosperm accumulates significant quantities of storage lipid, and this is effectively catabolized upon germination. This lipid differs in composition from that in the embryo and has a specific function during germination. Removing the endosperm from the wild-type seeds resulted in a reduction in hypocotyl elongation in the dark, demonstrating a role for endospermic TAG reserves in fueling skotomorphogenesis. Seedlings of two allelic gluconeogenically compromised phosphoenolpyruvate carboxykinase1 (pck1) mutants show a reduction in hypocotyl length in the dark compared with the wild type, but this is not further reduced by removing the endosperm. The short hypocotyl phenotypes were completely reversed by the provision of an exogenous supply of sucrose. The PCK1 gene is expressed in both embryo and endosperm, and the induction of PCK1:beta-glucuronidase at radicle emergence occurs in a robust, wave-like manner around the embryo suggestive of the action of a diffusing signal. Strikingly, the induction of PCK1 promoter reporter constructs and measurements of lipid breakdown demonstrate that whereas lipid mobilization in the embryo is inhibited by abscisic acid (ABA), no effect is seen in the endosperm. This insensitivity of endosperm tissues is not specific to lipid breakdown because hydrolysis of the seed coat cell walls also proceeded in the presence of concentrations of ABA that effectively inhibit radicle emergence. Both processes still required gibberellins, however. These results suggest a model whereby the breakdown of seed carbon reserves is regulated in a tissue-specific manner and shed new light on phytohormonal regulation of the germination process.  相似文献   

18.
19.
Ni BR  Bradford KJ 《Plant physiology》1993,101(2):607-617
Germination responses of wild-type (MM), abscisic acid (ABA)-deficient (sitw), and gibberellin (GA)-deficient (gib-1) mutant tomato (Lycopersicon esculentum Mill. cv Moneymaker) seeds to ABA, GA4+7, reduced water potential ([psi]), and their combinations were analyzed using a population-based threshold model (B.R. Ni and K.J. Bradford [1992] Plant Physiol 98: 1057-1068). Among the three genotypes, sitw seeds germinated rapidly and completely in water, MM seeds germinated more slowly and were partially dormant, and gib-1 seeds did not germinate without exogenous GA4+7. Times to germination were inversely proportional to the differences between the external osmoticum, ABA, or GA4+7 concentrations and the corresponding threshold levels that would either prevent ([psi]b, log[ABAb]) or promote (log[GAb]) germination. The sensitivity of germination to ABA, GA4+7, and [psi] varied widely among individual seeds in the population, resulting in a distribution of germination times. The rapid germination rate of sitw seeds was attributable to their low mean [psi]b (-1.17 MPa). Postharvest dormancy in MM seeds was due to a high mean [psi]b (-0.35 MPa) and a distribution of [psi]b among seeds such that some seeds were unable to germinate even on water. GA4+7 (100 [mu]M) stimulated germination of MM and gib-1 seeds by lowering the mean [psi]b to -0.75 MPa, whereas ABA inhibited germination of MM and sitw seeds by increasing the mean [psi]b. The changes in [psi]b were not due to changes in embryo osmotic potential. Rather, hormonal effects on endosperm weakening opposite the radicle tip apparently determine the threshold [psi] for germination. The analysis demonstrates that ABA- and GA-dependent changes in seed dormancy and germination rates, whether due to endogenous or exogenous growth regulators, are based primarily upon corresponding shifts in the [psi] thresholds for radicle emergence. The [psi] thresholds, in turn, determine both the rate and final extent of germination within the seed population.  相似文献   

20.
Class I β-1,3-glucanases are antifungal vacuolar proteins implicated in plant defense that show developmental, hormonal, and pathogenesis-related regulation. The expression was studied in germinating tobacco seeds of a chimeric β-glucuronidase (GUS) reporter gene fused to 1.6 kb of the 5' flanking sequence of the tobacco class I β-1,3-glucanase B (GLB) promoter. Histological staining for GUS activity showed that expression of the GLB promoter is highly localized in a specific zone of the endosperm in germinating seeds. The temporal and spatial patterns of GUS and β-1,3-glucanase activity found, suggest a novel function for class I β-1,3-glucanases during seed germination in a dicotyledonous plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号