首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of protrusions is necessary for numerous biological processes. It involves extension of the plasma membrane, and the force needed for this is provided by the actin cytoskeleton. Tether pulling with optical tweezers can mimic the formation of a protrusion, so we used this method to investigate the effects of modifying not only actin (with latrunculin A) but also microtubules (with nocodazole) and the plasma membrane itself (with methyl-β-cyclodextrin) on the Chinese hamster ovary cell membrane. After these modifications, the membrane reservoir was supposed to redistribute. Caveolae constitute a small part of the reservoir, so the redistribution of caveolar proteins such as caveolin-1 and cavin-1 that represents caveolae per se was assessed. The main findings concerning protrusion force and membrane reservoir availability were as follows: (1) they correlated inversely, (2) their values underwent the greatest change after microtubule disruption, and (3) membrane composition had a major influence on the parameters studied. F-actin disruption and cholesterol depletion decreased, and microtubule disruption increased the amount of the caveolar proteins (caveolae). Caveolae presented just an example of the membrane reservoir, and from our findings, we suppose that the perturbations caused were too large to be related to caveolae redistribution alone. The integrity of the cytoskeleton and plasma membrane composition are important factors in the formation of protrusions and in determining the availability and distribution of the membrane reservoir.  相似文献   

2.
Regulation of the actin cytoskeleton in cancer cell migration and invasion   总被引:1,自引:0,他引:1  
Malignant cancer cells utilize their intrinsic migratory ability to invade adjacent tissues and the vasculature, and ultimately to metastasize. Cell migration is the sum of multi-step processes initiated by the formation of membrane protrusions in response to migratory and chemotactic stimuli. The driving force for membrane protrusion is localized polymerization of submembrane actin filaments. Recently, several studies revealed that molecules that link migratory signals to the actin cytoskeleton are upregulated in invasive and metastatic cancer cells. In this review, we summarize recent progress on molecular mechanisms of formation of invasive protrusions used by tumor cells, such as lamellipodia and invadopodia, with regard to the functions of key regulatory proteins of the actin cytoskeleton; WASP family proteins, Arp2/3 complex, LIM-kinase, cofilin, and cortactin.  相似文献   

3.
Arabidopsis thaliana trichomes provide an attractive model system to dissect molecular processes involved in the generation of shape and form in single cell morphogenesis in plants. We have used transgenic Arabidopsis plants carrying a GFP-talin chimeric gene to analyze the role of the actin cytoskeleton in trichome cell morphogenesis. We found that during trichome cell development the actin microfilaments assumed an increasing degree of complexity from fine filaments to thick, longitudinally stretched cables. Disruption of the F-actin cytoskeleton by actin antagonists produced distorted but branched trichomes which phenocopied trichomes of mutants belonging to the 'distorted' class. Subsequent analysis of the actin cytoskeleton in trichomes of the distorted mutants, alien, crooked, distorted1, gnarled, klunker and wurm uncovered actin organization defects in each case. Treatments of wild-type seedlings with microtubule-interacting drugs elicited a radically different trichome phenotype characterized by isotropic growth and a severe inhibition of branch formation; these trichomes did not show defects in actin cytoskeleton organization. A normal actin cytoskeleton was also observed in trichomes of the zwichel mutant which have reduced branching. ZWICHEL, which was previously shown to encode a kinesin-like protein is thought to be involved in microtubule-linked processes. Based on our results we propose that microtubules establish the spatial patterning of trichome branches whilst actin microfilaments elaborate and maintain the overall trichome pattern during development.  相似文献   

4.
Clostridium difficile toxin (CDT) is a binary actin-ADP-ribosylating toxin that causes depolymerization of the actin cytoskeleton and formation of microtubule-based membrane protrusions, which are suggested to be involved in enhanced bacterial adhesion and colonization of hypervirulent C. difficile strains. Here, we studied the involvement of membrane lipid components of human colon adenocarcinoma (Caco-2) cells in formation of membrane protrusions. Depletion of cholesterol by methyl-β-cyclodextrin inhibited protrusion formation in a concentration-dependent manner but had no major effect on the toxin-catalyzed modification of actin in target cells. Repletion of cholesterol reconstituted formation of protrusions and increased velocity and total amount of protrusion formation. Methyl-β-cyclodextrin had no effect on the CDT-induced changes in the dynamics of microtubules. Formation of membrane protrusions was also inhibited by the cholesterol-binding polyene antibiotic nystatin. Degradation or inhibition of synthesis of sphingolipids by sphingomyelinase and myriocin, respectively, blocked CDT-induced protrusion formation. Benzyl alcohol, which increases membrane fluidity, prevented protrusion formation. CDT-induced membrane protrusions were stained by flotillin-2 and by the fluorescent-labeled lipid raft marker cholera toxin subunit B, which selectively interacts with GM1 ganglioside mainly located in lipid microdomains. The data suggest that formation and especially the initiation of CDT-induced microtubule-based membrane protrusions depend on cholesterol- and sphingolipid-rich lipid microdomains.  相似文献   

5.
The small GTPase RhoD regulates actin cytoskeleton to collapse actin stress fibers and focal adhesions, resulting in suppression of cell migration and cytokinesis. It also induces alignment of early endosomes along actin filaments and reduces their motility. We show here that a constitutively activated RhoD generated two types of actin-containing thin peripheral cellular protrusions distinct from Cdc42-induced filopodia. One was longer, almost straight, immotile, and sensitive to fixation, whereas the other was shorter, undulating, motile, and resistant to fixation. Moreover, cells expressing wild-type RhoD extended protrusions toward fibroblast growth factor (FGF) 2/4/8–coated beads. Stimulation of wild-type RhoD-expressing cells with these FGFs also caused formation of cellular protrusions. Nodules moved through the RhoD-induced longer protrusions, mainly toward the cell body. Exogenously expressed FGF receptor was associated with these moving nodules containing endosome-like vesicles. These results suggest that the protrusions are responsible for intercellular communication mediated by FGF and its receptor. Accordingly, the protrusions are morphologically and functionally equivalent to cytonemes. RhoD was activated by FGF2/4/8. Knockdown of RhoD interfered with FGF-induced protrusion formation. Activated RhoD specifically bound to mDia3C and facilitated actin polymerization together with mDia3C. mDia3C was localized to the tips or stems of the protrusions. In addition, constitutively activated mDia3C formed protrusions without RhoD or FGF stimulation. Knockdown of mDia3 obstructed RhoD-induced protrusion formation. These results imply that RhoD activated by FGF signaling forms cytoneme-like protrusions through activation of mDia3C, which induces actin filament formation.  相似文献   

6.
Over the past several years, it has become clear that the Rho family of GTPases plays an important role in various aspects of neuronal development including cytoskeleton dynamics and cell adhesion processes. We have analysed the role of MEGAP, a GTPase-activating protein that acts towards Rac1 and Cdc42 in vitro and in vivo, with respect to its putative regulation of cytoskeleton dynamics and cell migration. To investigate the effects of MEGAP on these cellular processes, we have established an inducible cell culture model consisting of a stably transfected neuroblastoma SHSY-5Y cell line that endogenously expresses MEGAP albeit at low levels. We can show that the induced expression of MEGAP leads to the loss of filopodia and lamellipodia protrusions, whereas constitutively activated Rac1 and Cdc42 can rescue the formation of these structures. We have also established quantitative assays for evaluating actin dynamics and cellular migration. By time-lapse microscopy, we show that induced MEGAP expression reduces cell migration by 3.8-fold and protrusion formation by 9-fold. MEGAP expressing cells also showed impeded microtubule dynamics as demonstrated in the TC-7 3x-GFP epithelial kidney cells. In contrast to the wild type, overexpression of MEGAP harbouring an artificially introduced missense mutation R542I within the functionally important GAP domain did not exert a visible effect on actin and microtubule cytoskeleton remodelling. These data suggest that MEGAP negatively regulates cell migration by perturbing the actin and microtubule cytoskeleton and by hindering the formation of focal complexes.  相似文献   

7.
The establishment and refinement of neuronal connections depend on dynamic modification of the morphology and physiology of developing axons in response to extrinsic factors. In embryonic cultures of Xenopus spinal neurons, acute application of brain-derived neurotrophic factor (BDNF) induced rapid collateral protrusion of filopodium-like microspikes and lamellipodia along the neurite processes, leading to a morphologic alternation of the neuron. Both types of membrane protrusions contained high concentrations of actin filaments and depended on the polymerization of the actin cytoskeleton. Immunofluorescent staining, however, revealed the presence of microtubules (MTs) in lamellipodia induced by BDNF. These MTs appeared to have arisen from debundling of MTs in the neurite shaft at the protrusion sites, splaying and extending in the rapidly protruding lamellipodia. Inhibition of microtubule polymerization by nocodazole largely abolished the formation of lamellipodia but not of microspikes. Taken together, our results suggest that collateral sprouting of microspikes and lamellipodia involve distinctly different cytoskeletal mechanisms. Although the actin cytoskeleton is solely responsible for microspike formation, cooperative efforts by microtubules and actin filaments are essential for lamellipodial protrusion in response to extrinsic factors.  相似文献   

8.
5-Aminolevulinic acid (ALA), a precursor of the endogenous photosensitizer protoporphyrin IX, is used in the photodynamic therapy (PDT) of cancer. Sub-lethal ALA-PDT (1-min irradiation with 370-450 nm blue light, 0.6 mW/cm(2) after 2-h incubation with 1 mM ALA) has been earlier shown to change cell morphology and to inhibit both trypsin-induced detachment of cultured cancer cells from the plastic substrata and cell attachment to the bottom of the plastic well plates. In the present study, we found that such treatment of human adenocarcinoma WiDr cells grown in dense colonies stimulated the formation of actin cortex between cells in the colonies and increased the number of actin stress fibres in some, but not in all, cells. However, ALA-PDT did not change the microtubular cytoskeleton in these cells. A similar treatment of glioblastoma D54Mg cells, which grow separately and communicate by protrusions, caused loss of fibrillar actin structures in growth cones, retraction of protrusions, and surface blebbing in some cells. The application of the cytoskeleton inhibitors cytochalasin D, colchicine or taxol showed that the inhibition of trypsin-induced detachment of photosensitized WiDr cells was related to ALA-PDT-induced changes in actin and microtubular cytoskeleton. Some signal transduction processes are suggested to be involved in ALA-PDT-induced changes in cytoskeleton, cell shape, and adhesion.  相似文献   

9.
The organization of actin, tubulin, and vimentin was studied in protruding lamellae of human fibroblasts induced by the aminoglycoside antibiotic neomycin, an inhibitor of the phosphatidylinositol cycle. Neomycin stimulates the simultaneous protrusion of lamellae in all treated cells, and the lamellae remain extended for about 15–20 min, before gradually withdrawing. The pattern and distribution of actin, tubulin, and vimentin during neomycin stimulation were analyzed by fluorescence and electron microscopy. F-actin in the newly formed lamellae is localized in a marginal band at the leading edge. Tubulin is colocalized with F-actin in the marginal band, but the newly formed lamellae are initially devoid of microtubules. Over a period of 10 to 20 min after the addition of neomycin, microtubules grow into the lamellae from the adjacent cytoplasm, while the intensity of tubulin staining of the marginal band decreases. Distribution of vimentin remains unchanged in neomycin-treated cells and vimentin filaments do not enter the new protrusions. Treatment of cells with colchicine and Taxol do not inhibit neomycin-induced protrusion but protrusions are no longer localized at the ends of cell processes and occur all around the cell periphery. We conclude that actin filaments are the major component of the cytoskeleton involved in generating protrusions. Microtubules and, possibly, intermediate filaments control the pattern of protrusions by their interaction with actin filaments.  相似文献   

10.
The organization of actin microfilaments was studied by immunofluorescence in protoplasts isolated from sunflower hypocotyls and cultured in an agarose matrix. Removal of the cell wall completely disrupted the actin cytoskeleton, which became progressively reorganized into cortical microfilament arrays and actin cables during protoplast culture. Treatment of protoplasts with arginine-glycine-aspartic acid (Arg-Gly-Asp) motif-containing peptides, to inhibit putative cell contacts with the agarose matrix, strongly affected this repair process: microfilament elongation and cable formation were inhibited and the connectivity between the cortical network and the perinuclear basket was lost. Furthermore, embryoid formation induced by agarose embedding was reduced. Similar effects were observed with a short treatment with latrunculin B, known to disrupt actin microfilaments. These results indicate that the actin network is involved in the signalling process that leads to polarity acquisition and embryoid determination in agarose-embedded protoplasts.  相似文献   

11.
Leading edge protrusion of migrating cells involves tightly coordinated changes in the plasma membrane and actin cytoskeleton. It remains unclear whether polymerizing actin filaments push and deform the membrane, or membrane deformation occurs independently and is subsequently stabilized by actin filaments. To address this question, we employed an ability of the membrane-binding I-BAR domain of IRSp53 to uncouple the membrane and actin dynamics and to induce filopodia in expressing cells. Using time-lapse imaging and electron microscopy of IRSp53-I-BAR-expressing B16F1 melanoma cells, we demonstrate that cells are not able to protrude or maintain durable long extensions without actin filaments in their interior, but I-BAR-dependent membrane deformation can create a small and transient space at filopodial tips that is subsequently filled with actin filaments. Moreover, the expressed I-BAR domain forms a submembranous coat that may structurally support these transient actin-free protrusions until they are further stabilized by the actin cytoskeleton. Actin filaments in the I-BAR-induced filopodia, in contrast to normal filopodia, do not have a uniform length, are less abundant, poorly bundled, and display erratic dynamics. Such unconventional structural organization and dynamics of actin in I-BAR-induced filopodia suggests that a typical bundle of parallel actin filaments is not necessary for generation and mechanical support of the highly asymmetric filopodial geometry. Together, our data suggest that actin filaments may not directly drive the protrusion, but only stabilize the space generated by the membrane deformation; yet, such stabilization is necessary for efficient protrusion.  相似文献   

12.
Many cell movements appear to be driven by the polymerization of actin. Here we show how the force of polymerization can be generated by the thermal motions of the actin filaments near the sites of polymerization. We apply the model to explain the observations that the lamellipodial cytoskeleton is organized into an orthogonal network interspersed with filopodial protrusions, and that the protrusion of lamellipodia generally proceeds in the presence of a rearward cytoskeletal flow. Received: 9 May 1996 / Accepted: 28 May 1996  相似文献   

13.
Directional cell movements during morphogenesis require the coordinated interplay between membrane receptors and the actin cytoskeleton. The WAVE regulatory complex (WRC) is a conserved actin regulator. Here, we found that the atypical cadherin Fat2 recruits the WRC to basal membranes of tricellular contacts where a new type of planar-polarized whip-like actin protrusion is formed. Loss of either Fat2 function or its interaction with the WRC disrupts tricellular protrusions and results in the formation of nonpolarized filopodia. We provide further evidence for a molecular network in which the receptor tyrosine phosphatase Dlar interacts with the WRC to couple the extracellular matrix, the membrane, and the actin cytoskeleton during egg elongation. Our data uncover a mechanism by which polarity information can be transduced from a membrane receptor to a key actin regulator to control collective follicle cell migration during egg elongation. 4D-live imaging of rotating MCF10A mammary acini further suggests an evolutionary conserved mechanism driving rotational motions in epithelial morphogenesis.  相似文献   

14.
《The Journal of cell biology》1995,131(5):1223-1230
Glucocorticoids induce the remodeling of the actin cytoskeleton and the formation of numerous stress fibers in a protein synthesis-dependent fashion in a variety of cell types (Castellino, F., J. Heuser, S. Marchetti, B. Bruno, and A. Luini. 1992. Proc. Natl. Acad. Sci. USA. 89:3775-3779). These cells can thus be used as models to investigate the mechanisms controlling the organization of actin filaments. Caldesmon is an almost ubiquitous actin- and calmodulin-binding protein that synergizes with tropomyosin to stabilize microfilaments in vitro (Matsumura, F., and Yamashiro, S. 1993. Current Opin. Cell Biol. 5:70- 76). We now report that glucocorticoids (but not other steroids) enhanced the levels of caldesmon (both protein and mRNA) and induced the reorganization of microfilaments with similar time courses and potencies in A549 cells. A caldesmon antisense oligodeoxynucleotide targeted to the most abundant caldesmon isoform in A549 cells dramatically inhibited glucocorticoid-induced caldesmon synthesis and actin reorganization with similar potencies. Several control oligonucleotides were inactive. These results demonstrate that caldesmon has a crucial role in vivo in the organization of the actin cytoskeleton and suggest that hormone-induced changes in caldesmon levels mediate microfilament remodeling.  相似文献   

15.
Productive protrusions allowing motile cells to sense and migrate toward a chemotactic gradient of reactive oxygen species (ROS) require a tight control of the actin cytoskeleton. However, the mechanisms of how ROS affect cell protrusion and actin dynamics are not well elucidated yet. We show here that ROS induce the formation of a persistent protrusion. In migrating epithelial cells, protrusion of the leading edge requires the precise regulation of the lamellipodium and lamella F-actin networks. Using fluorescent speckle microscopy, we showed that, upon ROS stimulation, the F-actin retrograde flow is enhanced in the lamellipodium. This event coincides with an increase of cofilin activity, free barbed ends formation, Arp2/3 recruitment, and ERK activity at the cell edge. In addition, we observed an acceleration of the F-actin flow in the lamella of ROS-stimulated cells, which correlates with an enhancement of the cell contractility. Thus, this study demonstrates that ROS modulate both the lamellipodium and the lamella networks to control protrusion efficiency.  相似文献   

16.
Dictyostelium conventional myosin (myosin II) is an abundant protein that plays a role in various cellular processes such as cytokinesis, cell protrusion and development. This review will focus on the signal transduction pathways that regulate myosin II during cell movement. Myosin II appears to have two modes of action in Dictyostelium: local stabilization of the cytoskeleton by myosin filament association to the actin meshwork (structural mode) and force generation by contraction of actin filaments (motor mode). Some processes, such as cell movement under restrictive environment, require only the structural mode of myosin. However, cytokinesis in suspension and uropod retraction depend on motor activity as well. Myosin II can self-assemble into bipolar filaments. The formation of these filaments is negatively regulated by heavy chain phosphorylation through the action of a set of novel alpha kinases and is relatively well understood. However, only recently it has become clear that the formation of bipolar filaments and their translocation to the cortex are separate events. Translocation depends on filamentous actin, and is regulated by a cGMP pathway and possibly also by the cAMP phosphodiesterase RegA and the p21-activated kinase PAKa. Myosin motor activity is regulated by phosphorylation of the regulatory light chain through myosin light chain kinase A. Unlike conventional light chain kinases, this enzyme is not regulated by calcium but is activated by cGMP-induced phosphorylation via an upstream kinase and subsequent autophosphorylation.  相似文献   

17.
A major form of animal cell-cell adhesion results from the dynamic association of cadherin molecules, cytosolic catenins and actin microfilaments. Cadherins dynamically regulate the cytoskeleton. In turn, the actin cytoskeleton contributes to cadherin molecule oligomerization at cell contacts and to cell reshaping in response to environmental changes. Over the past two years, this evolutionarily conserved adhesion system has been intensively revisited in both its structural and functional aspects; this is illustrated by the remarkable progress in the determination of physical parameters of cadherin bonds (including force measurement) and the new insights into the role of alpha-catenin and the regulation of actin dynamics at cadherin contacts. Other recent studies uncover the important contribution of acto-myosin, microtubules and cell tension to adherens junction formation, cell differentiation and tissue reshaping/remodeling. An open challenge is now to integrate these new data with the diversity of cadherin adhesive complexes.  相似文献   

18.
Epithelial-mesenchymal transition (EMT) is a crucial event in tumor invasion and metastasis. However, most of past EMT studies have been conducted in the conventional two-dimensional (2D) monolayer culture. Therefore, it remains unclear what invasive phenotypes are acquired by EMT-induced cancer cells. To address this point, we attempted to characterize EMT cells in more physiological, three-dimensional (3D) collagen gel culture. EMT was induced by treating three human carcinoma cell lines (A549, Panc-1 and MKN-1) with TGF-ß. The TGF-ß treatment stimulated these cells to overexpress the invasion markers laminin γ2 and MT1-MMP in 2D culture, in addition to the induction of well-known morphological change and EMT marker expression. EMT induction enhanced cell motility and adhesiveness to fibronectin and collagen in 2D culture. Although EMT cells showed comparable cell growth to control cells in 2D culture, their growth rates were extremely suppressed in soft agar and collagen gel cultures. Most characteristically, EMT-induced cancer cells commonly and markedly extended invasive protrusions in collagen gel. These protrusions were mainly supported by microtubules rather than actin cytoskeleton. Snail-introduced, stable EMT cells showed similar protrusions in 3D conditions without TGF-ß. Moreover, these protrusions were suppressed by colchicine or inhibitors of heat shock protein 90 (HSP-90) and protein phosphatase 2A. However, MMP inhibitors did not suppress the protrusion formation. These data suggest that EMT enhances tumor cell infiltration into interstitial stroma by extending microtubule-based protrusions and suppressing cell growth. The elevated cell adhesion to fibronectin and collagen and high cell motility also seem important for the tumor invasion.  相似文献   

19.
All modes of cell migration require rapid rearrangements of cell shape, allowing the cell to navigate within narrow spaces in an extracellular matrix. Thus, a highly flexible membrane and a dynamic cytoskeleton are crucial for rapid cell migration. Cytoskeleton dynamics and tension also play instrumental roles in the formation of different specialized cell membrane protrusions, viz. lamellipodia, filopodia, and membrane blebs. The flux of water through membrane-anchored water channels, known as aquaporins (AQPs) has recently been implicated in the regulation of cell motility, and here we provide novel evidence for the role of AQP9 in the development of various forms of membrane protrusion. Using multiple imaging techniques and cellular models we show that: (i) AQP9 induced and accumulated in filopodia, (ii) AQP9-associated filopodial extensions preceded actin polymerization, which was in turn crucial for their stability and dynamics, and (iii) minute, local reductions in osmolarity immediately initiated small dynamic bleb-like protrusions, the size of which correlated with the reduction in osmotic pressure. Based on this, we present a model for AQP9-induced membrane protrusion, where the interplay of water fluxes through AQP9 and actin dynamics regulate the cellular protrusive and motile activity of cells.  相似文献   

20.
《The Journal of cell biology》1988,107(6):2631-2645
The formation of protrusions at the leading edge of the cell is an essential step in fibroblast locomotion. Using fluorescent analogue cytochemistry, ratio imaging, multiple parameter analysis, and fluorescence photobleaching recovery, the distribution of actin and myosin was examined in the same protrusions at the leading edge of live, locomoting cells during wound-healing in vitro. We have previously defined two temporal stages of the formation of protrusions: (a) initial protrusion and (b) established protrusion (Fisher et al., 1988). Actin was slightly concentrated in initial protrusions, while myosin was either totally absent or present at extremely low levels at the base of the initial protrusions. In contrast, established protrusions contained diffuse actin and actin microspikes, as well as myosin in both diffuse and structured forms. Actin and myosin were also localized along concave transverse fibers near the base of initial and established protrusions. The dynamics of myosin penetration into a relatively stable, established protrusion was demonstrated by recording sequential images over time. Myosin was shown to be absent from an initial protrusion, but diffuse and punctate myosin was detected in the same protrusion within 1-2 min. Fluorescence photobleaching recovery indicated that myosin was 100% immobile in the region behind the leading edge containing transverse fibers, in comparison to the 21% immobile fraction detected in the perinuclear region. Possible explanations of the delayed penetration of myosin into established protrusions and the implications on the mechanism of protrusion are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号