首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine the pattern of molecular evolution of the β-esterase gene cluster, including the Est-6 and ψEst-6 genes, in eight species of the Drosophila melanogaster subgroup. Using maximum likelihood estimates of nonsynonymous/synonymous rate ratios, we show that the majority of Est-6 sites evolves under strong (48% of sites) or moderate (50% of sites) negative selection and a minority of sites (1.5%) is under significant positive selection. Est-6 sites likely to be under positive selection are associated with increased intraspecific variability. One positively selected site is responsible for the EST-6 F/S allozyme polymorphism; the same site is responsible for the EST-6 functional divergence between species of the melanogaster subgroup. For ψEst-6 83.7% sites evolve under negative selection, 16% sites evolve neutrally, and 0.3% sites are under positive selection. The positively selected sites of ψEst-6 are located at the beginning and at the end of the gene, where there is reduced divergence between D. melanogaster and D. simulans; these regions of ψEst-6 could be involved in regulation or some other function. Branch-site-specific analysis shows that the evolution of the melanogaster subgroup underwent episodic positive selection. Collating the present data with previous results for the β-esterase genes, we propose that positive and negative selection are involved in a complex relationship that may be typical of the divergence of duplicate genes as one or both duplicates evolve a new function. [Reviewing Editor: Dr. Martin Kreitman]  相似文献   

2.
A simple theoretical model of a Darwinian system (a periodic system with a multiplication phase and a selection phase) of entities (initial form of polymer strand, primary mutant and satellite mutants) is given. First case: one mutant is considered. One individual of the mutant appears in the multiplication phase of the first generation. The probabilities to find N mutants WnM(N) after the multiplication phase M of the n-th generation (with probability δ of an error in the replication, where all possible errors are fatal errors) and WnS(N) after the following selection phase S (with probability β that one individual survives) are given iteratively. The evolutionary tree is evaluated. Averages from the distributions and the probability of extinction WS(0) are obtained. Second case: two mutants are considered (primary mutant and new form). One individual of the primary mutant appears in the multiplication phase of the first generation. The probabilities to find Np primary mutants and Nm of the new form WnM(Np, Nm) after the multiplication phase M of the n-th generation (probability ε of an error in the replication of the primary mutant giving the new form) and WnS(Np, Nm) after the following selection phase S (probabilities βp and βm that one individual each of the primary mutant and of the new form survives) are given iteratively. Again the evolutionary tree is evaluated. Averages from the distributions are obtained.  相似文献   

3.
4.
A putative β-glucosidase gene from the genome of Bacillus halodurans C-125 was expressed in E. coli under the regulation of T7lac promoter. On induction with isopropyl-β-D-1-thiogalactopyranoside, the enzyme expressed at ∼40% of the cell protein producing 238 mg/liter culture. With increase in culture cell density to A 600 12 in auto-inducing M9NG medium, β-glucosidase production increased 3-fold. Approximately 70% of the expressed enzyme was in a soluble form, while the rest was in an insoluble fraction of the cell lysate. The soluble and active form of the expressed enzyme was purified by ammonium sulfate precipitation followed by ion-exchange chromatography to a purity >98%. The mass of the enzyme as determined by MALDI-TOF mass spectrometry was 51,601 Da, which is nearly the same as the calculated value. Phylogenetic analysis of the β-glucosidase of B. halodurans was found to cluster with members of the genus Bacillus. Temperature and pH optima of the enzyme were found to be 45°C and 8.0, respectively, under the assay conditions. K m and k cat against p-nitrophenyl-β-D-glucopyranoside were 4 mM and 0.75 sec−1, respectively. To our knowledge, this is the first report of high-level expression and characterization of a β-glucosidase from B. halodurans.  相似文献   

5.
MgADP and MgATP binding to catalytic sites of βY341W-α3β3Γ subcomplex of F1-ATPase from thermophilic Bacillus PS3 has been assessed using their effect on the enzyme inhibition by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl). It was assumed that NBD-Cl can inhibit only when catalytic sites are empty, and inhibition is prevented if a catalytic site is occupied with a nucleotide. In the absence of an activator, MgADP and MgATP protect βY341W-α3β3Γ sub-complex from inhibition by NBD-Cl by binding to two catalytic sites with an affinity of 37 μM and 12 mM, and 46 μM and 15 mM, respectively. In the presence of an activator lauryldimethylamine-N-oxide (LDAO), MgADP protects βY341W-α3β3Γ subcomplex from inhibition by NBD-Cl by binding to a catalytic site with a K d of 12 mM. Nucleotide binding to a catalytic site with affinity in the millimolar range has not been previously revealed in the fluorescence quenching experiments with βY341W-α3β3Γ subcomplex. In the presence of activators LDAO or selenite, MgATP protects βY341W-α3β3Γ subcomplex from inhibition by NBD-Cl only partially, and the enzyme remains sensitive to inhibition by NBD-Cl even at MgATP concentrations that are saturating for ATPase activity. The results support a bi-site mechanism of catalysis by F1-ATPases.  相似文献   

6.
The F1-ATP synthase complex constitutes the catalytic component of F1F0-ATP synthase, the primary ATP synthetic enzyme in the cell. Previous studies indicate that the glacier ice worm, Mesenchytraeus solifugus, maintains unusually high ATP levels that continue to rise as temperatures decline, suggesting that molecular changes within ice worm F1-ATP synthase subunits may contribute to this energetic anomaly. In this report, we compared ice worm F1-ATP synthase subunits (α, β, γ) with homologues across metazoan phyla (arthropod, chordate, nematode) and among a group of clitellate annelids (Enchytraeus albidus, Enchytraeus buchholzi, Lumbriculus variegatus, Theromyzon tessulatum). Amino acid alignments indicated that ice worm F1-ATP α and F1-ATP β subunits share strong sequence homology with their mesophilic counterparts, respectively, but that ATP γ has diverged more rapidly. Moreover, F1-ATP α and F1-ATP β displayed amino acid compositional changes consistent with trends observed in other cold adapted proteins, while F1-ATP γ diverged in unexpected directions (e.g., gains in size, charged residues). Several ice worm-specific amino acid substitutions map to positions near the F1-ATP β catalytic site while others occur near subunit contact sites.  相似文献   

7.
We report here two sets of results on proline-containing linear peptides, one of which brings out the role of theβ-turn conformation in the structure of nascent collagen while the other points to the functional importance of the β-turn in calcium-binding proteins. Based on the data on peptides containing the -Pro-Gly-sequence, we had proposed and experimentally verified that theβ-turn conformation in these peptides is a structural requirement for the enzymic hydroxylation of the proline residues in the nascent (unhydroxylated) procollagen molecule. Our recent data, presented here, on the conformation of peptides containing both the -Pro-Gly- and -Gly-Pro-sequences reveal that while theβ-turn in the substrate molecule is required at the catalytic site of prolyl hydroxylase, the polyproline-II structure is necessary for effective binding at the active site of the enzyme. Thus, peptides containing either theβ-turn or the polyproline-II structure alone are found to act only as inhibitors while those with the polyproline-II followed byβ-turn serve as substrates of the enzyme. In another study, we have synthesized the two linear peptides: Boc-Pro-D-Ala-Ala-NHCH3 and Boc-Pro-Gly-Ala-NHCH3 each of which adopts, in solution, a structure with two consecutiveβ-turns, as judged from circular dichroism, infrared and nuclear magnetic resonance data. Drastic spectral changes are seen in these peptides on binding to Ca2+. Both the peptides show a distinct specificity to Ca2+ over Mg2+, Na+ and Li+. A conformational change in the peptides occurs on Ca2+ binding which brings together the carbonyl groups to coordinate with the metal ion. These results imply a functional role for theβ-turn in Ca2+ — binding proteins.  相似文献   

8.
Xylaria regalis, a wood-grown ascomycete isolated in Taiwan, produces β-glucosidase (EC 3.2.1.21) extracellularly. The β-glucosidase was purified to homogeneity by ammonium sulfate precipitation, ion-exchange, and gel filtration chromatography. The molecular mass of the purified enzyme was estimated to be 85 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. With p-nitrophenyl β-D-glucopyranoside (PNPG) as the substrate at pH 5.0 and 50°C, the K m was 1.72 mM and V max was 326 μmol/min/mg. Optimal activity with PNPG as the substrate was at pH 5.0 and 50°C. The enzyme was stable at pH 5.0 at temperatures up to 50°C. The purified β-glucosidase was active against PNPG, cellobiose, sophorose, and gentiobiose, but did not hydrolyze lactose, sucrose, Avicel, and o-nitrophenyl β-D-galactopyranoside. The activity of β-glucosidase was stimulated by Ca2+, Mg2+, Mn2+, Cd2+ and β-mercaptoethanol, and inhibited by Ag+, Hg2+, SDS, and p-chloromercuribenzoate (PCMB). Received: 30 March 1996 / Accepted: 3 May 1996  相似文献   

9.
Many working environments are predisposed for larger than average amounts of fungi and other microorganisms often due to organic material being handled. From 2003 to 2007, the area used for strawberry production in Denmark increased by 62%. The purpose of this study was to determine the levels of exposure to microorganisms, endotoxin, (1→3)-β-d-glucan (β-glucan), and pollen in a field of strawberries. The study was carried out in eastern Denmark from the middle of June to the beginning of August 2008. The strawberries were grown organically, and microbiological pest control agents (MPCAs) were applied during this and former growth seasons. In order to measure exposure to inhalable bioaerosol components, we used stationary filter samplers. Bioaerosol sampling was performed during 4 working days, and a total of 57 samplings were performed. The filters were analysed for contents of fungi, MPCAs, endotoxin, β-glucan, and pollen. The mean exposure was 6,154 CFU Cladosporium sp. m−3, 1.0 × 105 fungal spores m−3, 4.1 × 104 hyphal fragments m−3, 5.8 × 103 pollen m−3, 57.3 ng β-glucan m−3, and 8.9 endotoxin units (EU) m−3. A significant and positive correlation was found between β-glucan and fungal spores and between CFU of Cladosporium sp. and CFU of fungi. We selected specifically for Metarhizium anisopliae, Beauveria bassiana, and the applied MPCAs Trichoderma harzianum, T. polysporum, and Bacillus thuringiensis but found none of these species. In conclusion, our study shows that berry pickers in this organic strawberry field were potentially subjected to higher levels of fungal spores, Cladosporium sp., hyphal fragments, pollen, and thus also β-glucan than is usually seen in outdoor air. Exposure to MPCAs was not seen. The exposure to endotoxin was only slightly higher than e.g. in a town.  相似文献   

10.
Thirteen steroidal compounds including three new polyhydroxysteroids, (24R,25S)-24-methyl-5α-cholestane-3β,6α,8,15β,16β,26-hexaol, (22E,24R,25S)-24-methyl-5α-cholest-22-ene-3β,6α,8,15β,16β,26-hexaol, and (22E,24R,25S)-24-methyl-5α-cholest-22-ene-3β,4β,6α,8,15β,16β,26-heptaol, have been isolated along with ten previously known polyhydroxysteroids from the tropical starfish Asteropsis carinifera collected near the coast of Vietnam. The structures of the new compounds were elucidated by spectroscopic methods (mainly 2D NMR and ESI mass spectrometry).  相似文献   

11.
Preparative-scale fermentation of ginsenoside Rb1 (1) with Acremonium strictum AS 3.2058 gave three new compounds, 12β-hydroxydammar-3-one-20 (S)-O-β-d-glucopyranoside (7), 12β, 25-dihydroxydammar-(E)-20(22)-ene-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (8), and 12β, 20 (R), 25-trihydroxydammar-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (9), along with five known compounds, ginsenoside Rd (2), gypenoside XVII (3), ginsenoside Rg3 (4), ginsenoside F2 (5), and compound K (6). The structural elucidation of these metabolites was based primarily on one- and two-dimensional nuclear magnetic resonance and high-resolution electron spray ionization mass spectra analyses. Among these compounds, 26 are also the metabolites of ginsenoside Rb1 in mammals. This result demonstrated that microbial culture parallels mammalian metabolism; therefore, A. strictum might be a useful tool for generating mammalian metabolites of related analogs of ginsenosides for complete structural identification and for further use in pharmaceutical research in this series of compounds. In addition, the biotransformation kinetics was also investigated.  相似文献   

12.
Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) exhibit genetic polymorphism and tissue specificity. ADH and ALDH isozyme phenotypes from 39 surgical Chinese lung specimens were identified by agarose isoelectric focusing. The identity of the lung β-ADHs was further demonstrated by their characteristic pH-activity profiles for ethanol oxidation,K m values for NAD and ethanol, and inhibition by 4-methylpyrazole or 1,10-phenanthroline. The β2 allele, coding for β2 polypeptide, was found to be predominant in the lung specimens studied. The ADH activities in the lungs with the homozygous phenotype ADH2 2-2 (exhibiting β2β2) and ADH2 1-1 (exhibiting β1β1) and the heterozygous phenotype ADH2 2-1 (exhibiting β2β2, β2β1, and β1β1) were determined to be 999±77, 48±17, and 494±61 nmol/min/g tissue, respectively. Fifty-one percent of the specimens studied lacked the ALDH2 activity band on the isoelectric focusing gels. The activities in the lung tissues with the ALDH2-active phenotype and the inactive phenotype were determined to be 30±3 and 17±1 nmol/min/g tissue, respectively. These findings indicate that human pulmonary ethanol-metabolizing activities differ significantly with respect to genetic polymorphism at both theADH 2 and theALDH 2 loci. The results suggest that individuals with highV max β2-ADH and deficient in low-K m mitochondrial ALDH2, accounting for approximately 45% of the Chinese population, may end up with acetaldehyde accumulation during alcohol consumption, rendering them vulnerable to tissue injury caused by this highly reactive and toxic metabolite. This work was supported by Grants NSC 77-0412-B016-58 and NSC 80-0412-B016-21 from the National Science Council, Republic of China.  相似文献   

13.
Nickel ions have been reported to exhibit differential effects on distinct subtypes of voltage-activated calcium channels. To more precisely determine the effects of nickel, we have investigated the action of nickel on four classes of cloned neuronal calcium channels (α1A, α1B, α1C, and α1E) transiently expressed in Xenopus oocytes. Nickel caused two major effects: (i) block detected as a reduction of the maximum slope conductance and (ii) a shift in the current-voltage relation towards more depolarized potentials which was paralleled by a decrease in the slope of the activation-curve. Block followed 1:1 kinetics and was most pronounced for α1C, followed by α1E > α1A > α1B channels. In contrast, the change in activation-gating was most dramatic with α1E, with the remaining channel subtypes significantly less affected. The current-voltage shift was well described by a simple model in which nickel binding to a saturable site resulted in altered gating behavior. The affinity for both the blocking site and the putative gating site were reduced with increasing concentration of external permeant ion. Replacement of barium with calcium reduced both the degree of nickel block and the maximal effect on gating for α1A channels, but increased the nickel blocking affinity for α1E channels. The coexpression of Ca channel β subunits was found to differentially influence nickel effects on α1A, as coexpression with β2a or with β4 resulted in larger current-voltage shifts than those observed in the presence of β1b, while elimination of the β subunit almost completely abolished the gating shifts. In contrast, block was similar for the three β subunits tested, while complete removal of the β subunit resulted in an increase in blocking affinity. Our data suggest that the effect of nickel on calcium channels is complex, cannot be described by a single site of action, and differs qualitatively and quantitatively among individual subtypes and subunit combinations. Received: 12 October 1995/Revised: 17 January 1996  相似文献   

14.
Previous studies in expression systems have found different ion activation of the Na+/K+-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used to quantify Na+,K+-ATPase activity, and the Na+ affinity of Na+,K+-ATPase was studied in total membranes from rat muscle and purified membranes from muscle with different fiber types. The Na+ affinity was higher (K m lower) in oxidative muscle compared with glycolytic muscle and in purified membranes from oxidative muscle compared with glycolytic muscle. Na+,K+-ATPase isoform analysis implied that heterodimers containing the β1 isoform have a higher Na+ affinity than heterodimers containing the β2 isoform. Immunoprecipitation experiments demonstrated that dimers with α1 are responsible for approximately 36% of the total Na,K-ATPase activity. Selective inhibition of the α2 isoform with ouabain suggested that heterodimers containing the α1 isoform have a higher Na+ affinity than heterodimers containing the α2 isoform. The estimated K m values for Na+ are 4.0, 5.5, 7.5 and 13 mM for α1β1, α2β1, α1β2 and α2β2, respectively. The affinity differences and isoform distributions imply that the degree of activation of Na+,K+-ATPase at physiological Na+ concentrations differs between muscles (oxidative and glycolytic) and between subcellular membrane domains with different isoform compositions. These differences may have consequences for ion balance across the muscle membrane.  相似文献   

15.
Jia Ping Zhao  Xiao Hua Su 《Planta》2010,232(4):949-962
Some pathogenesis-related proteins (PR proteins) are subject to positive selection, while others are under negative selection. Here, we report the patterns of molecular evolution in thaumatin-like protein (TLP, PR5 protein) genes of Populus trichocarpa. Signs of positive selection were found in 20 out of 55 Populus TLPs using the likelihood ratio test and ML-based Bayesian methods. Due to the connection between the acidic cleft and the antifungal activity, the secondary structure and three-dimensional structure analyses predicted antifungal activity β-1,3-glucanase activities in these TLPs. Moreover, the coincidence with variable basic sites in the acidic cleft and positively selected sites suggested that fungal diseases may have been the main environmental stress that drove rapid adaptive evolution in Populus.  相似文献   

16.
The CD59-coding sequences were obtained from 5 mammals by PCR and BLAST, and combined with the available sequences in GenBank, the nucleotide substitution rates of mammalian cd59 were calculated. Results of synonymous and nonsynonymous substitution rates revealed that cd59 experienced negative selection in mammals overall. Four sites experiencing positive selection were found by using “site-specific” model in PAML software. These sites were distributed on the molecular surface, of which 2 sites located in the key functional domain. Furthermore, “branch-site-specific” model detected 1 positive site in cd59a and cd59b lineages which underwent accelerated evolution caused by positive selection after gene duplication in mouse.  相似文献   

17.
Francisella tularensis ssp. tularensis is a category A select agent and the causal organism for the zoonotic disease tularemia. The vast majority of F. tularensis isolates are β-lactamase-positive. β-lactamase production is widely believed to be responsible for the inefficacy of β-lactams in the treatment of tularemia. In this study, we report the cloning and characterization of the two chromosomally encoded F. tularensis ssp. holarctica live-vaccine strain (LVS) β-lactamases. The two LVS β-lactamases were homologous to F. tularensis Schu S4 open reading frames FTT0681c and FTT0611c and have been named bla1 LVS and bla2 LVS , respectively. Recombinant expression in Escherichia coli suggested that bla1 LVS did not encode a functional β-lactamase, whereas bla2 LVS encoded a functional β-lactamase that hydrolyzed penicillins but was inactive against third-generation cephalosporins, including cefprozil. As both LVS and Schu S4 were susceptible to cefprozil, we developed three new shuttle vectors based on selection for the production of the Blashv-2 extended-spectrum β-lactamase with cefprozil. The resulting shuttle vectors were suitable for recombinant gene expression and complementation studies in LVS and Schu S4.  相似文献   

18.
A legume-type lectin (L-lectin) gene of the red algae Gracilaria fisheri (GFL) was cloned by rapid amplification of cDNA ends (RACE). The full-length cDNA of GFL was 1714 bp and contained a 1542 bp open reading frame encoding 513 amino acids with a predicted molecular mass of 56.5 kDa. Analysis of the putative amino acid sequence with NCBI-BLAST revealed a high homology (30–68%) with legume-type lectins (L-lectin) from Griffithsia japonica, Clavispora lusitaniae, Acyrthosiphon pisum, Tetraodon nigroviridis and Xenopus tropicalis. Phylogenetic relationship analysis showed the highest sequence identity to a glycoprotein of the red algae Griffithsia japonica (68%) (GenBank number AAM93989). Conserved Domain Database analysis detected an N-terminal carbohydrate recognition domain (CRD), the characteristic of L-lectins, which contained two sugar binding sites and a metal binding site. The secondary structure prediction of GFL showed a β-sheet structure, connected with turn and coil. The most abundant structural element of GFL was the random coil, while the α-helixes were distributed at the N- and C-termini, and 21 β-sheets were distributed in the CRD. Computer analysis of three-dimensional structure showed a common feature of L-lectins of GFL, which included an overall globular shape that was composed of a β-sandwich of two anti-parallel β-sheets, monosaccharide binding sites, were on the top of the structure and in proximity with a metal binding site. Northern blot analysis using a DIG-labelled probe derived from a partial GFL sequence revealed a hybridization signal of ~1.7 kb consistent with the length of the full-length GFL cDNA identified by RACE. No detectable band was observed from control total RNA extracted from filamentous green algae.  相似文献   

19.
Li L  Jia ZH  Chen C  Wei C  Han JK  Wu YL  Ren LM 《Purinergic signalling》2011,7(2):221-229
P2X1 receptors, the major subtype of P2X receptors in the vascular smooth muscle, are essential for α,β-methylene adenosine 5′-triphosphate (α,β-MeATP)-induced vasoconstriction. However, relative physiological significance of P2X1 receptor-regulated vasoconstriction in the different types of arteries in the rat is not clear as compared with α1-adrenoceptor-regulated vasoconstriction. In the present study, we found that vasoconstrictive responses to noncumulative administration of α,β-MeATP in the rat isolated mesenteric arteries were significantly smaller than those to single concentration administration of α,β-MeATP. Therefore, we firstly reported the characteristic of α,β-MeATP-regulated vasoconstrictions in rat tail, internal carotid, pulmonary, mesenteric arteries, and aorta using single concentration administration of α,β-MeATP. The rank order of maximal vasoconstrictions for α,β-MeATP (E max·α,β-MeATP) was the same as that of maximal vasoconstrictions for noradrenaline (E max·NA) in the internal carotid, pulmonary, mesenteric arteries, and aorta. Moreover, the value of (E max·α,β-MeATP/E max·KCl)/(E max·NA/E max·KCl) was 0.4 in each of the four arteries, but it was 0.8 in the tail artery. In conclusion, P2X1 receptor-mediated vasoconstrictions are equally important in rat internal carotid, pulmonary, mesenteric arteries, and aorta, but much greater in the tail artery, suggesting its special role in physiological function.  相似文献   

20.
Because of the shortage of phycoerythrin (PE) gene sequences from rhodophytes, peBA encoding - and -subunits of PE from three species of red algae (Ceramium boydenn, Halymenia sinensis, and Plocamium telfariae) were cloned and sequenced. Different selection forces have affected the evolution of PE lineages. 8.9 % of the codons were subject to positive selection within the PE lineages (excluding high-irradiance adapted Prochlorococcus). More than 40 % of the sites may be under positive selection, and nearly 20 % sites are weakly constraint sites in high-irradiance adapted Prochlorococcus. Sites most likely undergoing positive selection were found in the chromophore binding domains, suggesting that these sites have played important roles in environmental adaptation during PE diversification. Moreover, the heterogeneous distribution of positively selected sites along the PE gene was revealed from the comparison of low-irradiance adapted Prochlorococcus and marine Synechococcus, which firmly suggests that evolutionary patterns of PEs in these two lineages are significantly different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号