首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In Metazoa, four out of five complexes involved in oxidative phosphorylation (OXPHOS) are formed by subunits encoded by both the mitochondrial (mtDNA) and nuclear (nuDNA) genomes, leading to the expectation of mitonuclear coevolution. Previous studies have supported coadaptation of mitochondria-encoded (mtOXPHOS) and nuclear-encoded OXPHOS (nuOXPHOS) subunits, often specifically interpreted with regard to the “nuclear compensation hypothesis,” a specific form of mitonuclear coevolution where nuclear genes compensate for deleterious mitochondrial mutations due to less efficient mitochondrial selection. In this study, we analyzed patterns of sequence evolution of 79 OXPHOS subunits in 31 bivalve species, a taxon showing extraordinary mtDNA variability and including species with “doubly uniparental” mtDNA inheritance. Our data showed strong and clear signals of mitonuclear coevolution. NuOXPHOS subunits had concordant topologies with mtOXPHOS subunits, contrary to previous phylogenies based on nuclear genes lacking mt interactions. Evolutionary rates between mt and nuOXPHOS subunits were also highly correlated compared with non-OXPHO-interacting nuclear genes. Nuclear subunits of chimeric OXPHOS complexes (I, III, IV, and V) also had higher dN/dS ratios than Complex II, which is formed exclusively by nuDNA-encoded subunits. However, we did not find evidence of nuclear compensation: mitochondria-encoded subunits showed similar dN/dS ratios compared with nuclear-encoded subunits, contrary to most previously studied bilaterian animals. Moreover, no site-specific signals of compensatory positive selection were detected in nuOXPHOS genes. Our analyses extend the evidence for mitonuclear coevolution to a new taxonomic group, but we propose a reconsideration of the nuclear compensation hypothesis.  相似文献   

3.
Petruzzella V  Papa S 《Gene》2002,286(1):149-154
Among the mitochondrial disorders, complex I deficiencies are encountered frequently. Although some complex I deficiencies have been associated with mitochondrial DNA mutations, in the majority of the complex I-deficient patients mutations of nuclear genes are expected. This review attempts to summarize genetic defects affecting nuclear encoded subunits of complex I reported to date focusing on those found in the NDUFS4 gene. NDUFS4 product is 18 kDa protein which appears to have a dual role in complex I, at least: cAMP-dependent phosphorylation activates the complex; non-sense mutation of NDUFS4 prevents normal assembly of a functional complex in the inner mitochondrial membrane.  相似文献   

4.
Complex I (NADH:ubiquinone oxidoreductase) is the largest multimeric enzyme complex of the mitochondrial respiratory chain, which is responsible for electron transport and the generation of a proton gradient across the mitochondrial inner membrane to drive ATP production. Eukaryotic complex I consists of 14 conserved subunits, which are homologous to the bacterial subunits, and more than 26 accessory subunits. In mammals, complex I consists of 45 subunits, which must be assembled correctly to form the properly functioning mature complex. Complex I dysfunction is the most common oxidative phosphorylation (OXPHOS) disorder in humans and defects in the complex I assembly process are often observed. This assembly process has been difficult to characterize because of its large size, the lack of a high resolution structure for complex I, and its dual control by nuclear and mitochondrial DNA. However, in recent years, some of the atomic structure of the complex has been resolved and new insights into complex I assembly have been generated. Furthermore, a number of proteins have been identified as assembly factors for complex I biogenesis and many patients carrying mutations in genes associated with complex I deficiency and mitochondrial diseases have been discovered. Here, we review the current knowledge of the eukaryotic complex I assembly process and new insights from the identification of novel assembly factors. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

5.
《Epigenetics》2013,8(4):326-334
Most pathogenic mitochondrial DNA (mtDNA) mutations induce defects in mitochondrial oxidative phosphorylation (OXPHOS). However, phenotypic effects of these mutations show a large degree of variation depending on the tissue affected. These differences are difficult to reconcile with OXPHOS as the sole pathogenic factor suggesting that additional mechanisms contribute to lack of genotype and clinical phenotype correlationship. An increasing number of studies have identified a possible effect on the epigenetic landscape of the nuclear genome as a consequence of mitochondrial dysfunction. In particular, these studies demonstrate reversible or irreversible changes in genomic DNA methylation profiles of the nuclear genome. Here we review how mitochondria damage checkpoint (mitocheckpoint) induces epigenetic changes in the nucleus. Persistent pathogenic mutations in mtDNA may also lead to epigenetic changes causing genomic instability in the nuclear genome. We propose that “mitocheckpoint” mediated epigenetic and genetic changes may play key roles in phenotypic variation related to mitochondrial diseases or host of human diseases in which mitochondrial defect plays a primary role.  相似文献   

6.
Clinical and molecular findings in children with complex I deficiency   总被引:12,自引:0,他引:12  
Isolated complex I deficiency, the most frequent OXPHOS disorder in infants and children, is genetically heterogeneous. Mutations have been found in seven mitochondrial DNA (mtDNA) and eight nuclear DNA encoded subunits, respectively, but in most of the cases the genetic basis of the biochemical defect is unknown. We analyzed the entire mtDNA and 11 nuclear encoded complex I subunits in 23 isolated complex I-deficient children, classified into five clinical groups: Leigh syndrome, progressive leukoencephalopathy, neonatal cardiomyopathy, severe infantile lactic acidosis, and a miscellaneous group of unspecified encephalomyopathies. A genetic definition was reached in eight patients (35%). Mutations in mtDNA were found in six out of eight children with Leigh syndrome, indicating a prevalent association between this phenotype and abnormalities in ND genes. In two patients with leukoencephalopathy, homozygous mutations were detected in two different nuclear-encoded complex I genes, including a novel transition in NDUFS1 subunit. In addition to these, a child affected by mitochondrial encephalomyopathy had heterozygous mutations in NDUFA8 and NDUFS2 genes, while another child with neonatal cardiomyopathy had a complex rearrangement in a single NDUFS7 allele. The latter cases suggest the possibility of unconventional patterns of inheritance in complex I defects.  相似文献   

7.
Mitochondrial DNA mutations and human disease   总被引:1,自引:0,他引:1  
Helen A.L. Tuppen 《BBA》2010,1797(2):113-109
Mitochondrial disorders are a group of clinically heterogeneous diseases, commonly defined by a lack of cellular energy due to oxidative phosphorylation (OXPHOS) defects. Since the identification of the first human pathological mitochondrial DNA (mtDNA) mutations in 1988, significant efforts have been spent in cataloguing the vast array of causative genetic defects of these disorders. Currently, more than 250 pathogenic mtDNA mutations have been identified. An ever-increasing number of nuclear DNA mutations are also being reported as the majority of proteins involved in mitochondrial metabolism and maintenance are nuclear-encoded. Understanding the phenotypic diversity and elucidating the molecular mechanisms at the basis of these diseases has however proved challenging. Progress has been hampered by the peculiar features of mitochondrial genetics, an inability to manipulate the mitochondrial genome, and difficulties in obtaining suitable models of disease. In this review, we will first outline the unique features of mitochondrial genetics before detailing the diseases and their genetic causes, focusing specifically on primary mtDNA genetic defects. The functional consequences of mtDNA mutations that have been characterised to date will also be discussed, along with current and potential future diagnostic and therapeutic advances.  相似文献   

8.
《BBA》2020,1861(8):148202
Protein complexes from the oxidative phosphorylation (OXPHOS) system are assembled with the help of proteins called assembly factors. We here delineate the function of the inner mitochondrial membrane protein TMEM70, in which mutations have been linked to OXPHOS deficiencies, using a combination of BioID, complexome profiling and coevolution analyses. TMEM70 interacts with complex I and V and for both complexes the loss of TMEM70 results in the accumulation of an assembly intermediate followed by a reduction of the next assembly intermediate in the pathway. This indicates that TMEM70 has a role in the stability of membrane-bound subassemblies or in the membrane recruitment of subunits into the forming complex. Independent evidence for a role of TMEM70 in OXPHOS assembly comes from evolutionary analyses. The TMEM70/TMEM186/TMEM223 protein family, of which we show that TMEM186 and TMEM223 are mitochondrial in human as well, only occurs in species with OXPHOS complexes. Our results validate the use of combining complexome profiling with BioID and evolutionary analyses in elucidating congenital defects in protein complex assembly.  相似文献   

9.

Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects and early-onset hypertrophic cardiomyopathy with or without additional clinical features. A 23-year-old individual with cardiac and skeletal myopathy, neurological involvement, and combined deficiency of OXPHOS complexes in skeletal muscle was clinically and genetically investigated. Analysis of whole-exome sequencing data revealed a homozygous mutation in MRPL44 (c.467 T?>?G), which was not present in the biological father, and a region of homozygosity involving most of chromosome 2, raising the possibility of uniparental disomy. Short-tandem repeat and genome-wide SNP microarray analyses of the family trio confirmed complete maternal uniparental isodisomy of chromosome 2. Mitochondrial ribosome assembly and mitochondrial translation were assessed in patient derived-fibroblasts. These studies confirmed that c.467 T?>?G affects the stability or assembly of the large subunit of the mitochondrial ribosome, leading to impaired mitochondrial protein synthesis and decreased levels of multiple OXPHOS components. This study provides evidence of complete maternal uniparental isodisomy of chromosome 2 in a patient with MRPL44-related disease, and confirms that MRLP44 mutations cause a mitochondrial translation defect that may present as a multisystem disorder with neurological involvement.

  相似文献   

10.
Most pathogenic mitochondrial DNA (mtDNA) mutations induce defects in mitochondrial oxidative phosphorylation (OXPHOS). However, phenotypic effects of these mutations show a large degree of variation depending on the tissue affected. These differences are difficult to reconcile with OXPHOS as the sole pathogenic factor suggesting that additional mechanisms contribute to lack of genotype and clinical phenotype correlationship. An increasing number of studies have identified a possible effect on the epigenetic landscape of the nuclear genome as a consequence of mitochondrial dysfunction. In particular, these studies demonstrate reversible or irreversible changes in genomic DNA methylation profiles of the nuclear genome. Here we review how mitochondria damage checkpoint (mitocheckpoint) induces epigenetic changes in the nucleus. Persistent pathogenic mutations in mtDNA may also lead to epigenetic changes causing genomic instability in the nuclear genome. We propose that “mitocheckpoint” mediated epigenetic and genetic changes may play key roles in phenotypic variation related to mitochondrial diseases or host of human diseases in which mitochondrial defect plays a primary role.  相似文献   

11.
12.
A number of human diseases have been attributed to defects in oxidative phosphorylation (OXPHOS) resulting from mutations in the mitochondrial DNA (mtDNA). One such disease is Leber's hereditary optic neuropathy (LHON), a neurodegenerative disease of young adults that results in blindness due to atrophy of the optic nerve. The etiology of LHON is genetically heterogeneous and in some cases multifactorial. Eleven mtDNA mutations have been associated with LHON, all of which are missense mutations in the subunit genes for the subunits of the electron transport chain complexes I, III, and IV. Molecular, biochemical, and population genetic studies have categorized these mutations as high risk (class I), low risk (class II), or intermediate risk (class I/II). Class I mutations appear to be primary genetic causes of LHON, while class II mutations are frequently found associated with class I genotypes and may serve as exacerbating genetic factors. Different LHON pedigrees can harbor different combinations of class I, II, or I/II mtDNA mutations, as shown by the complete sequence analysis of the mtDNAs of four LHON probands. The various mtDNA genotypes included an isolated class I mutation, combined class I+II mutations, and combined class I/II+II mutations. The occurrence of such genotypes supports the hypothesis that LHON may result from the additive effects of various genetic and environmental insults to OXPHOS, each of which increases the probability of blindness.  相似文献   

13.
In this study, we have carried out an in silico analysis of the available mitochondrial and nuclear genomes of fungi in order to identify the oxidative phosphorylation (OXPHOS) proteome, the complete set of proteins that perform the OXPHOS in mitochondria. The presence of OXPHOS proteins has been investigated in 27 nuclear and 52 mitochondrial genomes of fungi. Comparative genomics reveals a high conservation of the OXPHOS system within each fungal phyla, and notable differences between the OXPHOS proteomes of the fungal phyla. The most striking differences concerned Complexes I and V. The absence of Complex I has been previously described in various species of Ascomycota and Microsporidia, and the NDUFB4 and NURM accessory subunits of Complex I appear to be specific of fungi belonging to the subphylum Pezizomycotina. In addition, the Complex V essential subunit ATP14 appears to be specific of two subphyla of Ascomycota: the Saccharomycotina and Pezizomycotina.  相似文献   

14.
Warburg proposed that cancer originates from irreversible injury to mitochondrial oxidative phosphorylation (mtOXPHOS), which leads to an increase rate of aerobic glycolysis in most cancers. However, despite several decades of research related to Warburg effect, very little is known about the underlying genetic cause(s) of mtOXPHOS impairment in cancers. Proteins that participate in mtOXPHOS are encoded by both mitochondrial DNA (mtDNA) as well as nuclear DNA. This review describes mutations in mtDNA and reduced mtDNA copy number, which contribute to OXPHOS defects in cancer cells. Maternally inherited mtDNA renders susceptibility to cancer, and mutation in the nuclear encoded genes causes defects in mtOXPHOS system. Mitochondria damage checkpoint (mitocheckpoint) induces epigenomic changes in the nucleus, which can reverse injury to OXPHOS. However, irreversible injury to OXPHOS can lead to persistent mitochondrial dysfunction inducing genetic instability in the nuclear genome. Together, we propose that "mitocheckpoint" led epigenomic and genomic changes must play a key role in reversible and irreversible injury to OXPHOS described by Warburg. These epigenetic and genetic changes underlie the Warburg phenotype, which contributes to the development of cancer.  相似文献   

15.
Mutations in mitochondrial DNA-encoded tRNA genes are associated with many human diseases. Activation of peroxisome proliferator-activated receptors (PPARs) by synthetic agonists stimulates oxidative metabolism, induces an increase in mitochondrial mass and partially compensates for oxidative phosphorylation system (OXPHOS) defects caused by single OXPHOS enzyme deficiencies in vitro and in vivo. Here, we analysed whether treatment with the PPAR panagonist bezafibrate in cybrids homoplasmic for different mitochondrial tRNA mutations could ameliorate the OXPHOS defect. We found that bezafibrate treatment increased mitochondrial mass, mitochondrial tRNA steady state levels and enhanced mitochondrial protein synthesis. This improvement resulted in increased OXPHOS activity and finally in enhanced mitochondrial ATP generating capacity. PPAR panagonists are known to increase the expression of PPAR gamma coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis. Accordingly, we found that clones of a line harbouring a mutated mitochondrial tRNA gene mutation selected for the ability to grow in a medium selective for OXPHOS function had a 3-fold increase in PGC-1α expression, an increase that was similar to the one observed after bezafibrate treatment. These findings show that increasing mitochondrial mass and thereby boosting residual OXPHOS capacity can be beneficial to an important class of mitochondrial defects reinforcing the potential therapeutic use of approaches stimulating mitochondrial proliferation for mitochondrial disorders.  相似文献   

16.
OXPHOS polymorphisms are known to be population specific and to influence disease. Previous studies have focused on mtDNA polymorphisms. Based on a world sampling of 629 unrelated individuals, we have now studied the polymorphisms of the 80 genes encoding OXPHOS nuclear subunits. We have shown that (i) amino-acid replacement frequencies are significantly correlated with their pathogenicity probability, and (ii) populations can be distinguished based only on amino-acid replacements in nuclear encoded OXPHOS subunits. These results are congruent with the major mtDNA haplogroups, which suggests that OXPHOS complexes are different across the populations in both nuclear and in mitochondrial encoded subunits.  相似文献   

17.
Here, relationships between alterations in tissue-specific content, protein structure, activity, and/or assembly of respiratory complexes III and IV induced by mutations in corresponding genes and various human pathologies are reviewed. Cytochrome bc(1) complex and cytochrome c oxidase (COX) deficiencies have been detected in a heterogeneous group of neuromuscular and non-neuromuscular diseases in childhood and adulthood, presenting a number of clinical phenotypes of variable severity. Such disorders can be caused by mutations located either in mitochondrial genes or in nuclear genes encoding structural subunits of the complexes or corresponding assembly factors/chaperones. Of the defects in mitochondrial DNA genes, mutations in cytochrome b subunit of complex III, and in structural subunits I-III of COX have been described to date. As to defects in nuclear DNA genes, mutations in genes encoding the complexes assembly factors such as the BCS1L protein for complex III; and SURF-1, SCO1, SCO2, and COX10 for complex IV have been identified so far.  相似文献   

18.
The expanding spectrum of nuclear gene mutations in mitochondrial disorders   总被引:4,自引:0,他引:4  
Our understanding of the molecular basis of mitochondrial disorders has come primarily from the discovery of an expanding number of mutations of mtDNA. However, a variety of recent observations indicate that many syndromes are due to abnormalities in nuclear genes related to oxidative-phosphorylation (OXPHOS). Nuclear genes encode hundreds of proteins involved in mitochondrial OXPHOS. Nevertheless, the identification of these genes has proceeded at a much slower pace, compared with the discovery and characterization of mtDNA mutations. This scenario is rapidly changing, thanks to the discovery of several OXPHOS-related human genes, and to the identification of mutations responsible for different clinical syndromes.  相似文献   

19.
Mitochondria are highly dynamic organelles that continuously move, fuse and divide. Mitochondrial dynamics modulate overall mitochondrial morphology and are essential for the proper function, maintenance and transmission of mitochondria and mitochondrial DNA (mtDNA). We have investigated mitochondrial fusion in yeast cells with severe defects in oxidative phosphorylation (OXPHOS) due to removal or various specific mutations of mtDNA. We find that, under fermentative conditions, OXPHOS deficient cells maintain normal levels of cellular ATP and ADP but display a reduced mitochondrial inner membrane potential. We demonstrate that, despite metabolic compensation by glycolysis, OXPHOS defects are associated to a selective inhibition of inner but not outer membrane fusion. Fusion inhibition was dominant and hampered the fusion of mutant mitochondria with wild-type mitochondria. Inhibition of inner membrane fusion was not systematically associated to changes of mitochondrial distribution and morphology, nor to changes in the isoform pattern of Mgm1, the major fusion factor of the inner membrane. However, inhibition of inner membrane fusion correlated with specific alterations of mitochondrial ultrastructure, notably with the presence of aligned and unfused inner membranes that are connected to two mitochondrial boundaries. The fusion inhibition observed upon deletion of OXPHOS related genes or upon removal of the entire mtDNA was similar to that observed upon introduction of point mutations in the mitochondrial ATP6 gene that are associated to neurogenic ataxia and retinitis pigmentosa (NARP) or to maternally inherited Leigh Syndrome (MILS) in humans. Our findings indicate that the consequences of mtDNA mutations may not be limited to OXPHOS defects but may also include alterations in mitochondrial fusion. Our results further imply that, in healthy cells, the dominant inhibition of fusion could mediate the exclusion of OXPHOS-deficient mitochondria from the network of functional, fusogenic mitochondria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号