首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vpr, an accessory gene product of human immunodeficiency virus type 1 (HIV-1), affects both viral and cellular proliferation by mediating long terminal repeat activation, cell cycle arrest at the G2 phase, and apoptosis. We previously found that Vpr plays a novel role as a regulator of pre-mRNA splicing both in vivo and in vitro. However, the cellular target of Vpr, as well as the mechanism of cellular pre-mRNA splicing inhibition by Vpr, is unknown. Here, we show clearly that Vpr inhibits the splicing of cellular pre-mRNA, such as beta-globin pre-mRNA and immunoglobulin (Ig) M pre-mRNA and that the third alpha-helical domain and arginine-rich region are important its ability to inhibit splicing. Additionally, using mutants with specific substitutions in two domains of Vpr, we demonstrated that the interaction between Vpr and SAP145, an essential splicing factor, was indispensable for splicing inhibition. Finally, co-immunoprecipitation and in vitro competitive binding assays indicated that Vpr associates with SAP145 and interferes with SAP145-SAP49 complex formation. Thus, these results suggest that cellular expression of Vpr may block spliceosome assembly by interfering with the function of the SAP145-SAP49 complex in host cells.  相似文献   

2.
Tan L  Ehrlich E  Yu XF 《Journal of virology》2007,81(19):10822-10830
Vpr-mediated induction of G2 cell cycle arrest has been postulated to be important for human immunodeficiency virus type 1 (HIV-1) replication, but the precise role of Vpr in this cell cycle arrest is unclear. In the present study, we have shown that HIV-1 Vpr interacts with damaged DNA binding protein 1 (DDB1) but not its partner DDB2. The interaction of Vpr with DDB1 was inhibited when DCAF1 (VprBP) expression was reduced by short interfering RNA (siRNA) treatment. The Vpr mutant (Q65R) that was defective for DCAF1 interaction also had a defect in DDB1 binding. However, Vpr binding to DDB1 was not sufficient to induce G2 arrest. A reduction in DDB1 or DDB2 expression in the absence of Vpr also did not induce G2 arrest. On the other hand, Vpr-induced G2 arrest was impaired when the intracellular level of DDB1 or Cullin 4A was reduced by siRNA treatment. Furthermore, Vpr-induced G2 arrest was largely abolished by a proteasome inhibitor. These data suggest that Vpr assembles with DDB1 through interaction with DCAF1 to form an E3 ubiquitin ligase that targets cellular substrates for proteasome-mediated degradation and G2 arrest.  相似文献   

3.
Accessory protein Vpr of human immunodeficiency virus type 1 (HIV-1) arrests cell cycling at G(2)/M phase in human and simian cells. Recently, it has been shown that Vpr also causes cell cycle arrest in the fission yeast Schizosaccharomyces pombe, which shares the cell cycle regulatory mechanisms with higher eukaryotes including humans. In this study, in order to identify host cellular factors involved in Vpr-induced cell cycle arrest, the ability of Vpr to cause elongated cellular morphology (cdc phenotype) typical of G(2)/M cell cycle arrest in wild-type and various mutant strains of S. pombe was examined. Our results indicated that Vpr caused the cdc phenotype in wild-type S. pombe as well as in strains carrying mutations, such as the cdc2-3w, Deltacdc25, rad1-1, Deltachk1, Deltamik1, and Deltappa1 strains. However, other mutants, such as the cdc2-1w, Deltawee1, Deltappa2, and Deltarad24 strains, failed to show a distinct cdc phenotype in response to Vpr expression. Results of these genetic studies suggested that Wee1, Ppa2, and Rad24 might be required for induction of cell cycle arrest by HIV-1 Vpr. Cell proliferation was inhibited by Vpr expression in all of the strains examined including the ones that did not show the cdc phenotype. The results supported the previously suggested possibility that Vpr affects the cell cycle and cell proliferation through different pathways.  相似文献   

4.
DNA damage is a universal inducer of cell cycle arrest at the G2 phase. Infection by the human immunodeficiency virus type 1 (HIV-1) also blocks cellular proliferation at the G2 phase. The HIV-1 accessory gene vpr encodes a conserved 96-amino acid protein (Vpr) that is necessary and sufficient for the HIV-1-induced block of cellular proliferation. In the present study, we examined a recently identified DNA damage-signaling protein, the ATM- and Rad3-related protein, ATR, for its potential role in the induction of G2 arrest by Vpr. We show that inhibition of ATR by pharmacological inhibitors, by expression of the dominant-negative form of ATR, or by RNA interference inhibits Vpr-induced cell cycle arrest. As with DNA damage, activation of ATR by Vpr results in phosphorylation of Chk1. This study provides conclusive evidence of activation of the ATR-initiated DNA damage-signaling pathway by a viral gene product. These observations are important toward understanding how HIV infection promotes cell cycle disruption, cell death, and ultimately, CD4+ lymphocyte depletion.  相似文献   

5.
Vpr, one of the accessory molecules of HIV-1, has been demonstrated to arrest the cell cycle at the G2 phase. This Vpr-mediated cell cycle arrest is implicated to have an important role in the viral life cycle. In the present study, we quantitate the extent of Vpr-mediated cell cycle arrest with the use of a bicistronic vector consisting of a vpr gene and a green fluorescence protein sequence. Using this system, we examined the effect of several Vprs on cell cycle progression and growth of cells from different species quantitatively. We found that Vpr from the T-cell line-adapted HIV-1SF2 strain (Vpr2) could not significantly induce G2 arrest in HeLa cells but was able to induce it in 293T cells. However, strong inhibition of cell proliferation in HeLa cells as well as in 293T cells was observed by Vpr2. This ability of Vpr2 to inhibit cell proliferation without G2 arrest was also observed when expressed in monkey cell line. Analyses of chimeric Vprs revealed that this species-non-specific growth inhibitory activity of Vpr was not mediated solely by the C-terminal region of Vpr. These results indicated that the growth inhibitory activity of Vpr is independent of its G2 arresting activity. In addition, the species-non-specific nature of this activity suggests that Vpr has a novel mechanism to retard cell proliferation by influencing basic cellular functions.  相似文献   

6.
Y Zhao  J Cao  M R O'Gorman  M Yu    R Yogev 《Journal of virology》1996,70(9):5821-5826
The human immunodeficiency virus type 1 (HIV-1) Vpr protein affects cell morphology and prevents proliferation of human cells by induction of cell cycle G2 arrest. In this study, we used the fission yeast Schizosaccharomyces pombe as a model system to investigate the cellular effects of HIV-1 vpr gene expression. The vpr gene was cloned into an inducible fission yeast gene expression vector and expressed in wild-type S. pombe cells, and using these cells, we were able to demonstrate the specific Vpr-induced effects by induction and suppression of vpr gene expression. Induction of HIV-1 vpr gene expression affected S. pombe at the colonial, cellular, and molecular levels. Specifically, Vpr induced small-colony formation, polymorphic cells, growth delay, and cell cycle G2 arrest. Additionally, Vpr-induced G2 arrest appeared to be independent of cell size and morphological changes. The cell cycle G2 arrest correlated with increased phosphorylation of p34cdc2, suggesting negative regulation of mitosis by HIV-1 Vpr. Treatment of Vpr-induced cell with a protein phosphatase inhibitor, okadaic acid, transiently suppressed cell cycle arrest and morphological changes. This observation implicates possible involvement of protein phosphatase(s) in the effects of Vpr. Together, these data showed that the HIV-1 Vpr-induced cellular changes in S. pombe are similar to those observed in human cells. Therefore, the S. pombe system is suited for further investigation of the HIV-1 vpr gene functions.  相似文献   

7.
Prior work has implicated viral protein R (Vpr) in the arrest of human immunodeficiency virus type 1 (HIV-1)-infected cells in the G2 phase of the cell cycle, associated with increased viral replication and host cell apoptosis. We and others have recently shown that virion infectivity factor (Vif ) also plays a role in the G2 arrest of HIV-1-infected cells. Here, we demonstrate that, paradoxically, at early time points postinfection, Vif expression blocks Vpr-mediated G2 arrest, while deletion of Vif from the HIV-1 genome leads to a marked increase in G2 arrest of infected CD4 T-cells. Consistent with this increased G2 arrest, T-cells infected with Vif-deleted HIV-1 express higher levels of Vpr protein than cells infected with wild-type virus. Further, expression of exogenous Vif inhibits the expression of Vpr, associated with a decrease in G2 arrest of both infected and transfected cells. Treatment with the proteasome inhibitor MG132 increases Vpr protein expression and G2 arrest in wild-type, but not Vif-deleted, NL4-3-infected cells, and in cells cotransfected with Vif and Vpr. In addition, Vpr coimmunoprecipitates with Vif in cotransfected cells in the presence of MG132. This suggests that inhibition of Vpr by Vif is mediated at least in part by proteasomal degradation, similar to Vif-induced degradation of APOBEC3G. Together, these data show that Vif mediates the degradation of Vpr and modulates Vpr-induced G2 arrest in HIV-1-infected T-cells.  相似文献   

8.
Viral protein R (Vpr), an accessory protein of human immunodeficiency virus type 1 (HIV-1), induces the G2 cell cycle arrest in fission yeast for which host factors, such as Wee1 and Rad24, are required. Catalyzing the inhibitory phosphorylation of Cdc2, Wee1 is known to serve as a major regulator of G2/M transition in the eukaryotic cell cycle. It has been reported that the G2 checkpoint induced by DNA damage or incomplete DNA replication is associated with phosphorylation and upregulation of Wee1 for which Chk1 and Cds1 kinase is required. In this study, we demonstrate that the G2 arrest induced by HIV-1 Vpr in fission yeast is also associated with increase in the phosphorylation and amount of Wee1, but in a Chk1/Cds1-independent manner. Rad24 and human 14-3-3 appear to contribute to Vpr-induced G2 arrest by elevating the level of Wee1 expression. It appears that Vpr could cause the G2 arrest through a mechanism similar to, but distinct from, the physiological G2 checkpoint controls. The results may provide useful insights into the mechanism by which HIV-1 Vpr causes the G2 arrest in eukaryotic cells. Vpr may also serve as a useful molecular tool for exploring novel cell cycle control mechanisms.  相似文献   

9.
The Vpr protein encoded by human immunodeficiency virus type 1 (HIV-1) is important for growth of virus in macrophages and prevents infected cells from passing into mitosis (G2 arrest). The cellular target for these functions is not known, but Vpr of HIV-1 and the related Vpr from simian immunodeficiency virus of sooty mangabeys (SIV(SM)) bind the DNA repair enzyme UNG, while the Vpx protein of SIV(SM) does not. Nonetheless, a mutational analysis of Vpr showed that binding to UNG is neither necessary nor sufficient for the effect of Vpr on the cell cycle.  相似文献   

10.
Yuan H  Kamata M  Xie YM  Chen IS 《Journal of virology》2004,78(15):8183-8190
Human immunodeficiency virus type 1 (HIV-1) Vpr induces cell cycle arrest at the G(2)/M transition and subsequently apoptosis. Here we examined the potential involvement of Wee-1 in Vpr-induced G(2) arrest. Wee-1 is a cellular protein kinase that inhibits Cdc2 activity, thereby preventing cells from proceeding through mitosis. We previously showed that the levels of Wee-1 correlate with Vpr-mediated apoptosis. Here, we demonstrate that Vpr-induced G(2) arrest correlated with delayed degradation of Wee-1 at G(2)/M. Experimental depletion of Wee-1 by a small interfering RNA directed to wee-1 mRNA alleviated Vpr-induced G(2) arrest and allowed apparently normal progression through M into G(1). Similar results were observed when cells were arrested at G(2) following gamma irradiation. Thus, Wee-1 is integrally involved as a key cellular regulatory protein in the signal transduction pathway for HIV-1 Vpr-induced cell cycle arrest.  相似文献   

11.
The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr induces cell cycle arrest in the G2 phase of the cell cycle followed by apoptosis. The mechanism of the arrest is unknown but the arrest is believed to facilitate viral replication. In the present study, we have established cell lines that allow conditional expression of Vpr, and have examined the mechanism of cell death following Vpr expression. We found that cells expressing Vpr enter M phase after long G2 arrest but formed aberrant multipolar spindles that were incapable of completing karyokinesis or cytokinesis. This abnormality provided the basis for apoptosis, which always followed in these cells. The multipolar spindles formed in response to abnormal centrosomal duplication that occurred during the G2 arrest but did not occur in cells arrested in G2 by irradiation. Thus, the expression of Vpr appears to be responsible for abnormal centrosome duplication, which in turn contributes in part to the rapid cell death following HIV-1 infection.  相似文献   

12.
13.
The human immunodeficiency virus type 1 (HIV-1) Vpr protein prevents infected cells from passing through mitosis by arresting them in the G2 phase of the cell cycle. Vpr is conserved among all primate lentiviruses, suggesting an important role in the virus life cycle. Moreover, in this study we show that the ability to cause cell cycle arrest is also conserved in Vpr proteins from a wide variety of both tissue culture-passaged and uncultured human (HIV-1 and HIV-2), sooty mangabey (simian immunodeficiency virus SIV(SM)), African green monkey (SIV(AGM)), and Sykes' monkey (SIV(SYK)) isolates. However, this property is cell type specific and appears to depend on the particular primate species from which the cells are derived. SIV(AGM) and SIV(SYK) Vpr proteins are capable of arresting African green monkey cells but are completely inactive in human cells. By contrast, HIV-1, HIV-2, and SIV(SM) Vpr proteins function in both simian and human cell types, although SIV(SM) Vpr functions more efficiently in simian cells than it does in human cells. Neither differential protein stability nor subcellular localization explains the species-specific activities of these proteins. These results thus suggest that Vpr exerts its G2 arrest function by interacting with cellular factors that have evolved differently among the various primate species.  相似文献   

14.
15.
Vpr, the viral protein R of human immunodeficiency virus type 1, induces G(2) cell cycle arrest and apoptosis in mammalian cells via ATR (for "ataxia-telangiectasia-mediated and Rad3-related") checkpoint activation. The expression of Vpr induces the formation of the gamma-histone 2A variant X (H2AX) and breast cancer susceptibility protein 1 (BRCA1) nuclear foci, and a C-terminal domain is required for Vpr-induced ATR activation and its nuclear localization. However, the cellular target of Vpr, as well as the mechanism of G(2) checkpoint activation, was unknown. Here we report that Vpr induces checkpoint activation and G(2) arrest by binding to the CUS1 domain of SAP145 and interfering with the functions of the SAP145 and SAP49 proteins, two subunits of the multimeric splicing factor 3b (SF3b). Vpr interacts with and colocalizes with SAP145 through its C-terminal domain in a speckled distribution. The depletion of either SAP145 or SAP49 leads to checkpoint-mediated G(2) cell cycle arrest through the induction of nuclear foci containing gamma-H2AX and BRCA1. In addition, the expression of Vpr excludes SAP49 from the nuclear speckles and inhibits the formation of the SAP145-SAP49 complex. To conclude, these results point out the unexpected roles of the SAP145-SAP49 splicing factors in cell cycle progression and suggest that cellular expression of Vpr induces checkpoint activation and G(2) arrest by interfering with the function of SAP145-SAP49 complex in host cells.  相似文献   

16.
17.
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) has been shown to cause G2 cell cycle arrest in human cells by inducing ATR-mediated inactivation of p34cdc2, but factors directly engaged in this process remain unknown. We used tandem affinity purification to isolate native Vpr complexes. We found that damaged DNA binding protein 1 (DDB1), viral protein R binding protein (VPRBP), and cullin 4A (CUL4A)--components of a CUL4A E3 ubiquitin ligase complex, DDB1-CUL4A(VPRBP)--were able to associate with Vpr. Depletion of VPRBP by small interfering RNA impaired Vpr-mediated induction of G2 arrest. Importantly, VPRBP knockdown alone did not affect normal cell cycle progression or activation of ATR checkpoints, suggesting that the involvement of VPRBP in G2 arrest was specific to Vpr. Moreover, leucine/isoleucine-rich domain Vpr mutants impaired in their ability to interact with VPRBP and DDB1 also produced strongly attenuated G2 arrest. In contrast, G2 arrest-defective C-terminal Vpr mutants were found to maintain their ability to associate with these proteins, suggesting that the interaction of Vpr with the DDB1-VPRBP complex is necessary but not sufficient to block cell cycle progression. Overall, these results point toward a model in which Vpr could act as a connector between the DDB1-CUL4A(VPRBP) E3 ubiquitin ligase complex and an unknown cellular factor whose proteolysis or modulation of activity through ubiquitination would activate ATR-mediated checkpoint signaling and induce G2 arrest.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) Vpr is a 96-amino-acid protein that is found associated with the HIV-1 virion. Vpr induces cell cycle arrest at the G(2)/M phase of the cell cycle, and this arrest is followed by apoptosis. We examined the mechanism of Vpr-induced apoptosis and found that HIV-1 Vpr-induced apoptosis requires the activation of a number of cellular cysteinyl aspartate-specific proteases (caspases). We demonstrate that ectopic expression of anti-apoptotic viral proteins, which inhibit caspase activity, and addition of synthetic peptides, which represent caspase cleavage sites, can inhibit Vpr-induced apoptosis. Finally, inhibition of caspase activity and subsequent inhibition of apoptosis results in increased viral expression, suggesting that therapeutic strategies aimed at reducing Vpr-induced apoptosis in vivo require careful consideration.  相似文献   

19.
Cyclophilin A (CypA) is a member of a family of cellular proteins that share a peptidyl prolyl cis-trans isomerase (PPIase) activity. CypA was previously reported to be required for the biochemical stability and function (specifically, induction of G2 arrest) of the human immunodeficiency virus type 1 (HIV-1) protein R (Vpr). In the present study, we examine the role of the Vpr-CypA interaction on Vpr-induced G2 arrest. We find that Vpr coimmunoprecipitates with CypA and that this interaction is disrupted by substitution of proline-35 of Vpr as well as incubation with the CypA inhibitor cyclosporine A (CsA). Surprisingly, the presence of CypA or its binding to Vpr is dispensable for the ability of Vpr to induce G2 arrest. Vpr expression in CypA-/- cells leads to induction of G2 arrest in a manner that is indistinguishable from that in CypA+ cells. CsA abolished CypA-Vpr binding but had no effect on induction of G2 arrest or Vpr steady-state levels. In view of these results, we propose that the interaction with CypA is independent of the ability of Vpr to induce cell cycle arrest. The interaction between Vpr and CypA is intriguing, and further studies should examine its potential effects on other functions of Vpr.  相似文献   

20.
Viral protein R (Vpr) of human immunodeficiency virus type 1 (HIV-1) is an accessory protein that plays an important role in viral pathogenesis. This pathogenic activity of Vpr is related in part to its capacity to induce cell cycle G2 arrest and apoptosis of target T cells. A screening for multicopy suppressors of these Vpr activities in fission yeast identified heat shock protein 70 (Hsp70) as a suppressor of Vpr-induced cell cycle arrest. Hsp70 is a member of a family of molecular chaperones involved in innate immunity and protection from environmental stress. In this report, we demonstrate that HIV-1 infection induces Hsp70 in target cells. Overexpression of Hsp70 reduced the Vpr-dependent G2 arrest and apoptosis and also reduced replication of the Vpr-positive, but not Vpr-deficient, HIV-1. Suppression of Hsp70 expression by RNA interference (RNAi) resulted in increased apoptosis of cells infected with a Vpr-positive, but not Vpr-defective, HIV-1. Replication of the Vpr-positive HIV-1 was also increased when Hsp70 expression was diminished. Vpr and Hsp70 coimmunoprecipitated from HIV-infected cells. Together, these results identify Hsp70 as a novel anti-HIV innate immunity factor that targets HIV-1 Vpr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号