首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of the synthesis of the quinoprotein glucose dehydrogenase (EC 1.1.99.17) has been studied inAcinetobacter calcoaceticus LMD 79.41, an organism able to oxidize glucose to gluconic acid, but unable to grow on both compounds. Glucose dehydrogenase was synthesized constitutively in both batch and carbon-limited chemostat cultures on a variety of substrates. In acetate-limited chemostat cultures glucose dehydrogenase levels and the glucose-oxidizing capacity of whole cells were dependent on the growth rate. They strongly increased at low growth rates at which the maintenance requirement of the cells had a pronounced effect on biomass yield. Cultures grown on a mixture of acetate and glucose in carbon and energy-limited chemostat cultures oxidized glucose quantitatively to gluconic acid. However, during oxygen-limited growth on this mixture glucose was not oxidized and only very low levels of glucose dehydrogenase were detected in cell-free extracts. After introduction of excess oxygen, however, cultures or washed cell suspensions almost instantaneously gained the capacity to oxidize glucose at a high rate, by an as yet unknown mechanism.  相似文献   

2.
Energy costs of biomass synthesis are relatively higher at low than at high specific growth rates () because of an increased protein content of the cell and increased costs of protein synthesis as such at low values. A comparison of aerobic, glucose limited cultures of Bacillus licheniformis in a chemostat and in a partial-recycling fermentor indicated that pulse-wise nutrient addition increased the maintenance energy demand (m). In the chemostat experiments, we also found a striking deviation from linearity between substrate consumption and , with large implications for the maintenance coefficient. The deviation is mainly due to a large shift in metabolic carbon flows at specific growth rates between 50 and 100% of max. At those growth rates, uncoupled growth occurs, presumably as a necessary condition for faster growth, since uncoupling results in a faster energysupply for biosynthetic purposes.The maintenance coefficient as determined by chemostat studies should be regarded as a compounds parameter, constituted of maintenance energy demands like ppGpp accumulation, variable costs of mRNA and protein accumulation, kinetic proofreading etc. and influenced by fermentor operation parameters like the substrate addition rate; moreover, both constancy of m and a linear relation between m and appear quite unlikely.  相似文献   

3.
For anaerobic glucose-limited chemostat cultures of Aerobacter aerogenes a values of 14.0 g/mole was found for Ymax/ATP and a value of 6.8 mmoles ATP/g dry weight/hr for the maintenance coefficient. Both values are much lower than those previously determined for tryptophan-limited anaerobic chemostat cultures. It is concluded that generally the largest part of the maintenance energy is not used for true maintenance processes. For aerobic glucose-limited chemostat cultures two phases could be differentiated. Acetate production started at mu values higher than 0.53. The slopes of the curves relating the specific rates of glucose- and oxygen consumption with mu became higher and lower respectively above the mu value of 0.53. Using the YATP values obtained in the anaerobic experiment a P/O ratio of about 1.3 could be calculated for glucose- and tryptophan-limited chemostat cultures. In sulfate-limited chemostat cultures acetate was produced at all growth rates. At high growth rates also pyruvate and alpha-ketoglutarate were produced. With the YATP values obtained in the anaerobic experiment a P/O ratio of about 0.4 was calculated for sulfate-limited chemostat cultures.  相似文献   

4.
A recycling fermentor (a chemostat with 100% biomass feedback) was used to study glucose-limited behavior of Escherichia coli B. The expectation from mass transfer analysis that growth would asymptotically approach a limit mass determined by the glucose provision rate (GPR) and the culture's maintenance requirement was not met. Instead, growth proceeded at progressively lower rates through three distinct phases. After the fermentor was seeded, but before glucose became limiting, growth followed the usual, exponential path (phase 1). About 12 h postseeding, residual glucose in the fermentor fell below 1 microgram . ml-1 and the growth rate (dx/dt) became constant and a linear function of GPR (phase 2). The specific growth rate, mu, therefore fell continuously throughout the phase. Biomass yield and glucose assimilation (13%) were near the level for exponential growth, however, and independent of GPR over a broad range. At a critical specific growth rate (0.04 h-1 for this strain), phase 2 ended abruptly and phase 3 commenced. In phase 3, the growth rate was again constant, although lower than in phase 2, so that mu continued to fall, but growth rates and yields were praboloid functions of GPR. They were never zero, however, at any positive value of GPR. By inference, the fraction of metabolic energy used for maintenance functions is constant for a given GPR, although different for phases 2 and 3, and independent of biomass. In both phases 2 and 3, orcinol, diphenylamine, and Lowry reactive materials were secreted at near-constant rates such that over 50% as much biosynthetic mass was secreted as was retained by the cells.  相似文献   

5.
For anaerobic glucose-limited chemostat cultures of Aerobacter aerogenes a values of 14.0 g/mole was found for Y ATP max and a value of 6.8 mmoles ATP/g dry weight/hr for the maintenance coefficient. Both values are much lower than those previously determined for tryptophan-limited anaerobic chemostat cultures. It is concluded that generally the largest part of the maintenance energy is not used for true maintenance processes. For aerobic glucose-limited chemostat cultures two phases could be differentiated. Acetate production started at μ values higher than 0.53. The slopes of the curves relating the specific rates of glucose- and oxygen consumption with μ became higher and lower respectively above the μ value of 0.53. Using the Y ATP values obtained in the anaerobic experiment a P/O ratio of about 1.3 could be calculated for glucose- and tryptophan-limited chemostat cultures. In sulfate-limited chemostat cultures acetate was produced at all growth rates. At high growth rates also pyruvate and α-ketoglutarate were produced. With the Y ATP values obtained in the anaerobic experiment a P/O ratio of about 0.4 was calculated for sulfate-limited chemostat cultures.  相似文献   

6.
Paracoccus denitrificans and Bacillus licheniformis were grown in a carbon- and energy source-limited recycling fermentor with 100% biomass feedback. Experimental data for biomass accumulation and product formation as well as rates of carbon dioxide evolution and oxygen consumption were used in a parameter optimization procedure. This procedure was applied on a model which describes biomass growth as a linear function of the substrate consumption rate and the rate of product formation as a linear function of the biomass growth rate. The fitting procedure yielded two growth domains for P. denitrificans. In the first domain the values for the maximal growth yield and the maintenance coefficient were identical to those found in a series of chemostat experiments. The second domain could be described best with linear biomass increase, which is equal to a constant growth yield. Experimental data of a protease producing B. licheniformis also yielded two growth domains via the fitting procedure. Again, in the first domain, maximal growth yield and maintenance requirements were not significantly different from those derived from a series of chemostat experiments. Domain 2 behaviour was different from that observed with P. denitrificans. Product formation halts and more glucose becomes available for biomass formation, and consequently the specific growth rate increases in the shift from domain 1 to 2. It is concluded that for many industrial production processes, it is important to select organisms on the basis of a low maintenance coefficient and a high basic production of the desired product. It seems less important that the maximal production becomes optimized, which is the basis of most selection procedures.  相似文献   

7.
Changes in lactose concentration and feed rate altered bacterial growth and population levels in a whey-processing chemostat. The bacterial population and methane production levels increased in relation to increased lactose concentrations comparable to those in raw whey (6%) and converted over 96% of the substrate to methane, carbon dioxide, and cells. Sequential increases in the chemostat dilution rate demonstrated excellent biomethanation performance at retention times as low as 25 h. Retention times shorter than 25 h caused prevalent bacterial populations and methane production to decrease, and intermediary carbon metabolites accumulated in the following order: acetate, butyrate, propionate, lactate, ethanol, and lactose. Bacterial species dominated in the chemostat as a function of their enhanced substrate uptake and growth kinetic properties. The substrate uptake kinetic properties displayed by the mixed chemostat population were equivalent to those of individual species measured in pure culture, whereas the growth kinetic properties of species in mixed culture were better than those measured in pure culture. A designed starter culture consisting of Leuconostoc mesenteroides, Desulfovibrio vulgaris, Methanosarcina barkeri, and Methanobacterium formicicum displayed biomethanation performance, which was similar to that of a diverse adapted mixed-culture inoculum, in a continuous contact digestor system to which 10 g of dry whey per liter was added. Preserved starter cultures were developed and used as inocula for the start-up of a continuous anaerobic digestion process that was effective for biomethanation of raw whey at a retention time of 100 h.  相似文献   

8.
Substrate and energy costs of the production of exocellular enzymes from glucose and citrate by B. Iicheniformis S1684 as well as molar growth yields corrected for these costs of product formation were calculated using data from chemostat experiments. The calculations showed that 1.46-1.73 mol glucose and 2.31-2.77 mol citrate are needed for formation and excretion of 1 mol protein. Consequently, the values of the maximal product yield from substrate (Y(psm') g/mol) are 80 < Y(psm) < 95 when product is formed from glucose and 50 < Y(psm) < 60 when product is formed from citrate. The higher substrate costs for product formation from citrate are due to a higher level of CO(2) production during protein formation and a higher substrate requirement for the energy supply of product formation and excretion than when product is formed from glucose. The theoretical ATP requirement for protein synthesis could be determined reasonably well, but the energy costs of protein excretion could not be determined exactly. The energy costs of protein formation are higher than those of biomass formation or protein excretion. Molar growth yields corrected for the substrate costs of product formation were high, indicating a high efficiency of growth.Growth and production parameters were determined as well from experimental data of recycling fermentor experiments using a parameter optimization procedure based on a mathematical model describing biomass growth as a linear function of the substrate consumption rate and the rate of product formation as a linear function of biomass growth rate. The fitting procedure yielded two growth and production domains during glucose limitation. In the first domain the values for the maximal growth yield and maintenance coefficient were in agreement with those found in chemostat experiments at corresponding values of Y(spm). Domain 2 could be described best with linear growth and product formation. In domain 2 the rate of product formation decreased and more substrate became available for biomass formation. As a consequence the specific growth rate increased in the shift from domain 1 to 2. Domain 2 behavior most probably is caused by the rel-status of B. Iicheniformis S1684.  相似文献   

9.
The objectives of this work were (1) to demonstrate how the chemostat approach could be modified to allow determination of kinetic parameters for a sparingly soluble, volatile substrate such as naphthalene and (2) to examine the influence of the interactions of various nutrients on possible growth-inhibitory effects of naphthalene. Pseudomonas putida G7 was used as a model naphthalene-degrading microorganism. Naphthalene was found to be toxic to P. putida G7 in the absence of a nitrogen source or oxygen. The death rate of cells grown on minimal medium plus naphthalene and then exposed to naphthalene under anoxic conditions was higher than that observed under oxic conditions in the absence of a nitrogen source. The presence of necessary nutrients for the biodegradation of PAH compounds is indicated to be important for the survival of microorganisms that are capable of PAH degradation. The amounts of ammonia and oxygen necessary for naphthalene biodegradation and for suppression of naphthalene toxicity were calculated from growth yield coefficients. A chemostat culture of P. putida G7 using naphthalene as a carbon and energy source was accomplished by using a feed augmented with a methanol solution of naphthalene so as to provide sufficient growth to allow accurate evaluation of kinetic parameters. When naphthalene was the growth-limiting substrate, the degradation of naphthalene followed Monod kinetics. Maximum specific growth rate (micrometer) and Monod constant (Ks) were 0.627 +/- 0.007 h-1 and 0.234 +/- 0.0185 mg/L, respectively. The evaluation of biodegradation parameters will allow a mathematical model to be applied to predict the long-term behavior of PAH compounds in soil when combined with PAH transport parameters.  相似文献   

10.
The hydrogen-oxidizing bacterium, Alcaligenes eutrophus (ATCC 17707), was grown in chemostat culture with gas-phase (hydrogen, oxygen, and carbon dioxide) and liquid-phase (mineral nutrients) feedstreams; data were used to generate an analytical form for the specific growth rate equation. Model parameters obtained include Monod rate parameters for dissolved hydrogen and oxygen gases, yield coefficients, and specific maintenance rates under conditions of hydrogen or oxygen limitations. These values are similar to some obtained previously by Ohi et al. for another hydrogen bacterium. The observed increase in specific maintenance rates under hydrogen-versus-oxygen-limited culture may be associated with hydrogenase deactivation by oxygen.  相似文献   

11.
Biodegradation kinetics of naphthalene, phenanthrene and pyrene were studied in sole-substrate systems, and in binary and ternary mixtures to examine substrate interactions. The experiments were conducted in aerobic batch aqueous systems inoculated with a mixed culture that had been isolated from soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Monod kinetic parameters and yield coefficients for the individual compounds were estimated from substrate depletion and CO(2) evolution rate data in sole-substrate experiments. In all three binary mixture experiments, biodegradation kinetics were comparable to the sole-substrate kinetics. In the ternary mixture, biodegradation of naphthalene was inhibited and the biodegradation rates of phenanthrene and pyrene were enhanced. A multisubstrate form of the Monod kinetic model was found to adequately predict substrate interactions in the binary and ternary mixtures using only the parameters derived from sole-substrate experiments. Numerical simulations of biomass growth kinetics explain the observed range of behaviors in PAH mixtures. In general, the biodegradation rates of the more degradable and abundant compounds are reduced due to competitive inhibition, but enhanced biodegradation of the more recalcitrant PAHs occurs due to simultaneous biomass growth on multiple substrates. In PAH-contaminated environments, substrate interactions may be very large due to additive effects from the large number of compounds present.  相似文献   

12.
Comparable kinetic parameters were derived for the hydrolysis of peptide substrates and the interaction of synthetic inhibitors with recombinant and naturally-occurring forms of plasmepsin II. In contrast, recombinant plasmepsin I was extended by 12 residues at its N-terminus relative to its naturally-occurring counterpart and a 3-10-fold diminution in the k(cat) values was measured for substrate hydrolysis by the recombinant protein. However, comparable Ki values were derived for the interaction of two distinct inhibitors with both forms of plasmepsin I, thereby validating the use of recombinant material for drug screening. The value of plasmepsin I inhibitors was determined by assessing their selectivity using human aspartic proteinases.  相似文献   

13.
Summary The growth parameters of Acinetobacter calcoaceticus, relevant to its mass cultivation on acetate and ethanol, were determined in batch and continuous culture experiments. Acetic acid exhibited a more powerful inhibitory effect on the growth rate than ethanol. In batch culture, the acetate component of an acetate-ethanol substrate pair was preferentially utilized, but diauxic growth as such was not evident. The temperature optimum for growth was in the region of 29°–36°C, and the cell yield did not change appreciably over this temperature range. In carbon-limited chemostat cultures, the maximum specific growth rates on acetate and ethanol were 1.22 h−1 and 0.96 h−1 respectively, and the respective yield coefficients were 0.4 and 0.75. A high maintenance energy requirement was exhibited, especially during acetate-limited growth. The respiratory quotient was dependent on the growth rate, the significance of which is discussed. Part of the material included in this paper was presented at the VIth International Fermentation Symposium, London, Ontario, July 1980  相似文献   

14.
Olive oil degradation by the thermophilic lipolytic strain Bacillus thermoleovorans IHI-91 in chemostat and batch culture was modeled to obtain a general understanding of the underlying principles and limitations of the process and to quantify its stoichiometry. Chemostat experiments with olive oil as the sole carbon source were successfully described using the Monod chemostat model extended by terms for maintenance requirements and wall growth. Maintenance requirements and biomass yield coefficients were in the range reported for mesophiles. For a chemostat experiment at D = 0.3 h(-1) the model was validated up to an olive oil feed concentration of about 3.0 g L(-1) above which an inhibitory effect occurred. Further analysis showed that the liberated oleic acid is the main cause for this inhibition. Using steady-state oleic acid concentrations measured in chemostat experiments with olive oil as substrate it was possible to derive a kinetic expression for oleic acid utilization, showing that a concentration of 430 mg L(-1) leads to a complete growth inhibition. Oleic acid accumulation observed during batch fermentations can be predicted using a model involving growth-associated lipase production and olive oil hydrolysis. Simulations confirmed that this accumulation is the cause for the sudden growth cessation occurring in batch fermentations with higher olive oil start concentrations. Further, an oscillatory behavior, as observed in some chemostat experiments, can also be predicted using the latter model. This work clearly demonstrates that thermophilic lipid degradation by Bacillus thermoleovorans IHI-91 is limited by long-chain fatty acid beta-oxidation rather than oil hydrolysis.  相似文献   

15.
Growth and maintenance parameters μmax, Ks, m, and Ym for cellulase biosynthesis on lactose by T. reesei-C5 were estimated and compared with published data on other soluble substrates and mutant strains of T. reesei in continuous culture. Growth was favored at higher feed lactose but cellulase productivities did not increase proportionally, suggesting that a degree of inhibition and/or catabolic repression within the strain is possible. The estimated values of growth kinetics and maintenance parameters varied little but were within a reasonable range of published data on other soluble substrates and mutant strains of T. reesei in continuous cultures.  相似文献   

16.
To study the effect of acetate inhibition on the parameters of yield and maintenance for bacterial growth, Pseudomonas putida ATCC 23467 was grown in a minimal salts medium with acetate as the sole carbon source with limiting and with excess quantities of urea in the feed medium. The behavior of the chemostat cultures under sole acetate limitation results in low residual acetate present in the fermentation broth. These cultures can be described satisfactorily using the equation q(s) = D/Y(g) + m, i.e., the acetate is consumed only for growth and maintenance,. Those cultures in which urea was limiting or where urea was present in large excess contained significant amounts of residual acetate in the broth. For these cultures it was necessary to add a third term for acetate inhibition to the above expression.  相似文献   

17.
Sikora AL  Frankel BA  Blanchard JS 《Biochemistry》2008,47(40):10781-10789
Arylamine N-acetyltransferases (NATs) are cytosolic enzymes that catalyze the transfer of the acetyl group from acetyl coenzyme A (AcCoA) to the free amino group of arylamines and hydrazines. Previous studies have reported that overexpression of NAT from Mycobacterium smegmatis and Mycobacterium tuberculosis may be responsible for increased resistance to the front-line antitubercular drug, isoniazid, by acetylating and hence inactivating the prodrug. We report the kinetic characterization of M. tuberculosis NAT which reveals that substituted anilines are excellent substrates but that isoniazid is a very poor substrate for this enzyme. We propose that the expression of NAT from M. tuberculosis (TBNAT) is unlikely to be a significant cause of isoniazid resistance. The kinetic parameters for a variety of TBNAT substrates were examined, including 3-amino-4-hydroxybenzoic acid and AcCoA, revealing K m values of 0.32 +/- 0.03 and 0.14 +/- 0.02 mM, respectively. Steady-state kinetic analysis of TBNAT reveals that the enzyme catalyzes the reaction via a bi-bi ping-pong kinetic mechanism. The pH dependence of the kinetic parameters reveals that one enzyme group must be deprotonated for optimal catalytic activity and that two amino acid residues at the active site of the free enzyme are involved in binding and/or catalysis. Solvent kinetic isotope effects suggest that proton transfer steps are not rate-limiting in the overall reaction for substituted aniline substrates but become rate-limiting when poor hydrazide substrates are used.  相似文献   

18.
The classical Monod model for bacterial growth in a chemostat, based on a Michaelis-Menten kinetic analog, is restated in terms of an approximate Lotka-Volterra formulation. The parameters of these two formulations are explicitly related; the new model is easier to work with, but yields the same results as the original. The model is then extended to the case where multiple alternate substrates may be growth limiting, using the corresponding kinetic analogs for multiple-substrate enzymes. Again, one is led to a Lotka-Volterra analog. In the multiple-substrate model, however, coexistence of multiple genotypes is possible, in contrast to the single-substrate model. The usual Lotka-Volterra conditions for existence and stability of pure or mixed equilibria may all be translated into corresponding statements about the parameters of the chemostat system. Possible extensions to deal with metabolic inhibition, cross-feeding, and predation are indicated.  相似文献   

19.
Iodothyronine separation from free iodide and iodoalbumin in serial serum samples obtained from 7 human and 5 dog studies following intravenous injection of radiolabeled reverse triiodothyronine (reverse T3) was compared using acidified ammonium acetate/tetrahydrofuran (THF) elution from C-18 SEP-PAK cartridges or ethyl acetate/butanol (EAB) extraction. Both methods excluded greater than 98% free iodide and greater than 99% iodoalbumin from the iodothyronine fraction. Recovery of labeled reverse T3 was higher for the THF/SEP-PAK (79.4 +/- 4.1%) than for the EAB method (43.2 +/- 6.1%, P less than 0.001), and intra-assay coefficients of variation were lower (2.1 +/- 0.6% and 4.4 +/- 2.0%, respectively, P less than 0.001); HPLC analysis of iodothyronine fractions revealed a single peak co-migrating with injected tracer. The THF/SEP-PAK technique allowed use of larger serum samples at later time points. Serum disappearance curves derived from these two methods were highly correlated in all cases (r = 0.998, P less than 0.001), as were fits of data to sums of exponentials and calculated serum kinetic parameters.  相似文献   

20.
Growth energetics of the acetic acid bacterium Acetobacter pasteurianus were studied with aerobic, ethanol-limited chemostat cultures. In these cultures, production of acetate was negligible. Carbon limitation and energy limitation were also evident from the observation that biomass concentrations in the cultures were proportional to the concentration of ethanol in the reservoir media. Nevertheless, low concentrations of a few organic metabolites (glycolate, citrate, and mannitol) were detected in culture supernatants. From a series of chemostat cultures grown at different dilution rates, the maintenance energy requirements for ethanol and oxygen were estimated at 4.1 mmol of ethanol (middot) g of biomass(sup-1) (middot) h(sup-1) and 11.7 mmol of O(inf2) (middot) g of biomass(sup-1) (middot) h(sup-1), respectively. When biomass yields were corrected for these maintenance requirements, the Y(infmax) values on ethanol and oxygen were 13.1 g of biomass (middot) mol of ethanol(sup-1) and 5.6 g of biomass (middot) mol of O(inf2)(sup-1), respectively. These biomass yields are very low in comparison with those of other microorganisms grown under comparable conditions. To investigate whether the low growth efficiency of A. pasteurianus might be due to a low gain of metabolic energy from respiratory dissimilation, (symbl)H(sup+)/O stoichiometries were estimated during acetate oxidation by cell suspensions. These experiments indicated an (symbl)H(sup+)/O stoichiometry for acetate oxidation of 1.9 (plusmn) 0.1 mol of H(sup+)/mol of O. Theoretical calculations of growth energetics showed that this low (symbl)H(sup+)/O ratio adequately explained the low biomass yield of A. pasteurianus in ethanol-limited cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号