首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four long-spined sea urchin species in the genus Diadema are known to occur around the Japanese Archipelago. Three species (D. savignyi, D. setosum, and D. paucispinum) are widely distributed in the Indo-Pacific Ocean. The fourth species was detected by DNA analysis among samples originally collected as D. savignyi or D. setosum in Japan and the Marshall Islands and tentatively designated as Diadema -sp, remaining an undescribed species. We analyzed nucleotide sequences of the cytochrome oxidase I (COI) gene in the “D. savignyi-like” samples, and found all 17 individuals collected in the mainland of Japan (Sagami Bay and Kyushu) to be Diadema-sp, but all nine in the Ryukyu Archipelago (Okinawa and Ishigaki Islands) to be D. savignyi, with large nucleotide sequence difference between them (11.0%±1.7 SE). Diadema-sp and D. savignyi shared Y-shaped blue lines of iridophores along the interambulacrals, but individuals of Diadema-sp typically exhibited a conspicuous white streak at the fork of the Y-shaped blue iridophore lines, while this feature was absent in D. savignyi. Also, the central axis of the Y-shaped blue lines of iridophores was approximately twice as long as the V-component in D. savignyi whereas it was of similar length in Diadema-sp. Two parallel lines were observed to constitute the central axis of the Y-shaped blue lines in both species, but these were considerably narrower in Diadema-sp. Despite marked morphological and genetic differences, it appears that Diadema-sp has been mis-identified as D. savignyi for more than half a century.  相似文献   

2.
Summary Coexistence between the coral reef inhabiting sea urchins Echinometra mathaei, Diadema savignyi and D. setosum was studied by comparing differences in body morphology, distribution, diet, susceptibility to predators, intra- and interspecific competition and settlement. The three species share similar diets and broad within-habitat distributions but differ in their microspatial preferences. E. mathaei is the smallest species, has the highest settlement rates and lives territorially within small burrows or crevices. D. savignyi is intermediate in size and lives frequently in intermediate size crevices or occassionally in social groups. D. setosum is the largest species and occassionally lives in large crevices or more frequently in social groups. Both Diadema have similarily low settlement rates. Competition experiments showed that E. mathaei was consistently the top competitor for crevice space. Diadema species shared larger crevices but competition occured within smaller crevices and was frequently won by the largest individual, regardless of species. D. savignyi may be the top competitor for crevice space between the Diadema species due to a reduced spine length/test size ratio which gives it a larger test for the same crevice size requirement. Predation rates were high for E. mathaei and low for both Diadema species. Coexistence is mediated by predation on the competitive-dominant while predation coupled with different body morphologies and behavior allows spatial resource partitioning of the reef's variable topography. Consequently, the three variables of predation, topographic complexity and differing body shapes create the observed species diversity. A reduction in predators due to stochastic fluctuations or from fishing pressure can lead to E. mathaei population increases and competitive exclusion of Diadema.  相似文献   

3.
Abstract. The spine morphology of all established species of Diadema and Echinothrix, including 2 color morphs of E. calamaris, were examined externally and internally via transverse sectioning to identify diagnostic species features and to assess the morphological relationship between species. Forty‐nine different morphological characters were measured and analysed using ordination by multi‐dimensional scaling (MDS) and cluster analysis. Specimens of Diadema paucispinum and D. setosum had very distinct spine structures. In D. paucispinum, the spines were more robust than those of other species of Diadema. This was evident in the spine's internal structure, with large, closely packed solid wedges, a small axial cavity, and rings of trabeculae throughout the spine's length. The spines in D. setosum were distinctive because of their length in relation to test size and the reduced flaring of their verticillations. The spines of other members of this genus were very similar to each other. Without careful sectioning, the spines from specimens of D. antillarum, D. ascensionis, D. mexicanum and D. savignyi were difficult to differentiate. The internal structures of spines for each species did, however, possess a combination of features that differentiated the species. Such features included the shape, orientation, and number of solid wedges, the presence or absence of spokes and rings of trabeculae between the solid wedges, and the presence or absence of tissue within the axial cavity. Individuals of Diadema palmeri also had spines morphologically similar to other species, however, the red pigmentation of these spines (in life and when preserved) made them easily distinguishable. The spine structures of the 2 species of Echinothrix were starkly different, while the white and brown color morphs of E. calamaris had morphologically distinctive ambulacral and interambulacral spines. The blunt, open‐tipped interambulacral spines, with reticular tissue present in the axial cavity of the white color morph, were easily distinguished from the pointed, closed‐tipped spines, with a hollow axial cavity found in the brown color morph. Such differences indicate that the brown color morph is either a subspecies or a separate species. Taken together the data show that each species has significant morphological differences in the structure of the spines. It is evident from our data that spine morphology is a useful tool to differentiate these commonly confused species.  相似文献   

4.
Summary On the coral reefs of Curaçao and Bonaire (Netherlands Antilles) the sea urchin Diadema antillarum is a major coral predator. In areas with high coral cover, up to 8.2% of the Diadema population (with a density of 8.5 animals/m2) was feeding on living coral surfaces at night. Acropora species are the most heavily attacked corals.  相似文献   

5.
Summary Interference behavior by threespot damselfish directed at the sea urchins, Diadema antillarum and Echinometra viridis, differed in levels of aggression and discrimination. Higher aggression towards and recognition of Diadema by threespots was correlated with the distribution of Diadema along edges of coral patches. Lower aggression levels combined with lower recognition levels of Echinometra were correlated with a distribution of Echinometra closer to damselfish algal lawns. Differences in behavior of the urchins stimulated differing levels of aggression by the damselfish directly affecting the distribution of the urchins in the back-reef environment.This is contribution number 167 from the Discovery Bay Marine Laboratory of the University of the West Indies, Jamaica  相似文献   

6.
Tuya  Fernando  Boyra  Arturo  Sanchez-Jerez  Pablo  Barbera  Carmen  Haroun  Ricardo 《Hydrobiologia》2004,519(1-3):211-214
We sampled 36 coastal rocky reefs throughout the overall Canarian Archipelago and consider (1) the daily macroalgal consumption of the long-spined sea urchin Diadema antillarum and (2) the daily net production of macroalgae along temperate rocky-substrates, to provide evidence that Diadema antillarum plays an important role in the structure of the shallow benthic environment of the eastern Atlantic. D. antillarum was found to be the main key-herbivore species, as it controls by its own the algal assemblages, with negligible contribution of other grazing species.  相似文献   

7.
The ecologically important sea urchin Diadema antillarum suffered mass mortalities in 1983, first noted in Panama and then reported from the rest of the Caribbean. We documented the effects of this mortality at two localities on the Atlantic coast of Panama, Punta Galeta and the San Blas Archipelago. At Punta Galeta, affected by the mortality in January 1983, the numbers of D. antillarum changed from an estimated 14,000 per ha in June 1982 to 0.5 per ha in May 1983; by February 1984 they had increased to 38 per ha. In the San Blas, where mass mortality started in April 1983, the number of D. antillarum in permanent quadrats on 8 reefs was reduced by an average of 94.2%. The average reduction in population density measured in transects on nine reefs was 98.9%. Data taken in permanent quadrats on four reefs in 1978, 1979 and 1980 indicate that population fluctuations of D. antillarum are normally much smaller, justifying the labeling of the 1983 event as mass mortality. Size structure of the San Blas populations was also affected; mean test diameter of D. antillarum on four reefs was reduced from 48.6 mm to 25.0 mm. Other echinoids (Echinometra viridis, E. lucunter, Lytechinus variegatus, L. williamsi, Eucidaris tribuloides, Tripneustes ventricosus, Clypeaster rosaceus and Echinoneus cyclostomus) suffered no ill effects at either Galeta or the San Blas; their population densities remained stable or increased. Density determinations of Diadema mexicanum at the island of Taboguilla on the Pacific side of Panama indicate that Diadema mass mortality did not extend to the eastern Pacific. Sea surface temperatures, tidal levels, rainfall and salinity showed no abnormal fluctuations during the time of D. antillarum mass mortality at Galeta, suggesting that mortality was not due to physical stress. The wide geographical spread and species-specificity of the mortality suggest a water-borne pathogen as the most likely causative agent. Recovery of D. antillarum populations is likely to be slow because there are few, if any, unaffected populations in the Caribbean to contribute larvae for the recolonization of depleted areas. The absence of D. antillarum will probably be reflected by changes in the algal, coral and echinoid communities, and by altered patterns of bioerosion.  相似文献   

8.
Gonad indices for two species of Diadema and two species of Echinothrix, including two color morphs of Echinothrix calamaris, are described for a 12-month period on Sosoikula Reef and Nukubuco Reef, Viti Levu, Fiji. Seasonal fluctuations in salinity (36.11±0.88 ppt) and water temperature (26.35±0.91°C) occurred. Gonad index data showed monthly reproductive rhythms, closely attuned to the lunar cycle. Diadema savignyi and Echinothrix diadema spawned on the full moon, and Diadema setosum and E. calamaris (white and brown color morphs) spawned on the new moon. Breeding periodicities coincided with the spring tides, thus maximizing chances of fertilization and dispersal. Such breeding cycles indicate how closely related species can co-exist with minimum risk of hybridization. Unusual sex ratios were found for all species, with an exceptionally low incidence of males. Reasons for this deviation from the typically reported 1:1 sex ratio may relate to the exceptionally high levels of tributyltin (TBT) recorded in Suva Harbor.  相似文献   

9.
Abstract. The tridentate pedicellariae in all species of Diadema and Echinothrix recognized by Mortensen, plus species described later (to include D. palmeri and two color morphs of E. calamaris) were examined to identify diagnostic species characters, and to determine whether such characters are useful in inferring phylogenetic relationships between species. Nineteen morphological characters were measured and analyzed, and species‐specific characters were identified. The morphometric data were then transformed using gap coding and a parsimony analysis was undertaken. The resulting cladogram for the tridentate pedicellariae present in species of Diadema was compared with the mitochondrial DNA phylogeny of Lessios et al., with a good level of congruence observed. Very narrow forceps‐like tridentate pedicellariae were found to be basal among Recent species, present only in D. setosum and D. palmeri. Members of D. palmeri were found to be unique within the genus, having both the forceps‐like form and a broad form of tridentate pedicellaria. The very narrow forceps‐like form is absent in all subsequent divergent species, while the broad form of tridentate pedicellaria in D. palmeri is basal to the broad forms in D. antillarum, D. mexicanum, D. paucispinum, and both the broad and narrow forms of tridentate pedicellaria of D. savignyi. The greatest similarity was found between the broad forms of tridentate pedicellaria in D. antillarum and D. mexicanum. These species were also found to have narrow forms of tridentate pedicellaria that showed a reasonable level of association to one another and to the rostrate form in D. ascensionis. Since the work of Mortensen, D. ascensionis has been shown, using mitochondrial DNA, to be nested within D. antillarum. The results of this study show that the tridentate pedicellaria in D. ascensionis are distinctly different from all other forms within the genus, to the extent that they belong to a rostrate subclass. This indicates that, among Diadema species, the tridentate pedicellariae are one of the first morphological characters to diverge in genetically isolated populations. Unlike the tridentate pedicellariae in Diadema, the different forms of tridentate pedicellariae in E. calamaris and E. diadema showed a stronger association intraspecifically than between forms interspecifically. The small forms of tridentate pedicellaria of the white and brown color morphs in E. calamaris showed a high level of association, while the large forms showed only a moderate association, far lower than would be expected between color morphs of the same species. This suggests that they are either subspecies or recently diverged separate species. This study demonstrates the taxonomic value contained within the characters of the tridentate pedicellariae for both differentiating species (even subspecies) and inferring phylogenetic relationships between species.  相似文献   

10.
《Aquatic Botany》2007,86(3):204-212
Grazing preferences of two species of Diadema and two species of Echinothrix, including two colour morphs of Echinothrix calamaris, were investigated by gut contents analysis, in situ feeding observations, and grazing preferences trials in aquaria. Grazing preferences were compared to the distribution and abundance of diadematid sea urchins and the percentage cover of algal and seagrass species throughout Sosoikula Reef and Nukubuco Reef, Fiji. Results showed that grazing was selective, with distinct preferences between sea urchin genera, species, and colour morphs of E. calamaris. Preferred species of algae were non-calcareous, with reportedly low concentrations of tannins, phenols and bioactive compounds. Both Diadema savignyi and D. setosum selected Codium geppiorum as their most preferred species, followed by Hydroclathrus clathratus. All Echinothrix favoured Hy. clathratus, with both colour morphs of E. calamaris next selecting Padina pavonica and E. diadema selecting green filamentous algae. The seagrass species Syringodium isoetifolium was only grazed in significant quantities by E. calamaris (b) and E. diadema. This reflected species distributions in the seagrass bed. Peak abundances of diadematid sea urchins coincided with many of their grazing preferences at their maximum percentage cover. However, only E. diadema and D. savignyi had significant correlations with preferred algal/seagrass species (E. diadema with Co. geppiorum, and D. savignyi with G. marginata) throughout the subhabitats identified on the reefs.  相似文献   

11.
Aim Our aims were: (1) to reconstruct a molecular phylogeny of the cephalaspidean opisthobranch genus Bulla, an inhabitant of shallow sedimentary environments; (2) to test if divergence times are consistent with Miocene and later vicariance among the four tropical marine biogeographical provinces; (3) to examine the phylogenetic status of possible Tethyan relict species; and (4) to infer the timing and causes of speciation events. Location Tropical and warm‐temperate regions of the Atlantic, Indo‐West Pacific, Australasia and eastern Pacific. Methods Ten of the 12 nominal species of Bulla were sampled, in a total sample of 65 individuals, together with cephalaspidean outgroups. Phylogenetic relationships were inferred by Bayesian analysis of partial sequences of the mitochondrial cytochrome c oxidase I (COI) and 16S rRNA and nuclear 28S rRNA genes. Divergence times and rates of evolution were estimated using uncorrelated relaxed‐clock Bayesian methods with fossil calibrations (based on literature review and examination of fossil specimens), implemented in beast . The geographical pattern of speciation was assessed by estimating the degree of overlap between sister lineages. Results Four clades were supported: Indo‐West Pacific (four species), Australasia (one species), Atlantic plus eastern Pacific (three species) and Atlantic (two species), with estimated mean ages of 35–46 Ma. Nominal species were monophyletic, but deep divergences were found within one Indo‐West Pacific and one West Atlantic species. Species‐level divergences occurred in the Miocene or earlier. The age of a sister relationship across the Isthmus of Panama was estimated at 7.9–32.1 Ma, and the divergence of a pair of sister species on either side of the Atlantic Ocean occurred 20.4–27.2 Ma. Main conclusions Fossils suggest that Bulla originated in the Tethys realm during the Middle Eocene. Average ages of the four main clades fall in the Eocene, and far pre‐date the 18–19 Ma closure of the Tethys Seaway. This discrepancy could indicate earlier vicariant events, selective extinction or errors of calibration. Similarly, the transisthmian divergence estimate far pre‐dates the uplift of the Panamanian Isthmus at about 3 Ma. Speciation events occurred in the Miocene, consistent with tectonic events in the central Indo‐West Pacific, isolation of the Arabian Sea by upwelling and westward trans‐Atlantic dispersal. Differences in habitat between sister species suggest that ecological speciation may also have played a role. The basal position of the Australasian species supports its interpretation as a Tethyan relict.  相似文献   

12.
Don R. Levitan 《Oecologia》1988,76(4):627-629
Summary This study documents size- and density-dependent growth (positive and negative), in the sea urchin Diadema antillarum. In the summer of 1983, an inverse relationship was found between Diadema test diameter and population density at seven sites in Lameshur Bay, St. John, United States Virgin Islands. The regression of this relationship improved when test diameter was plotted against density per unit grazing area. A field experiment demonstrated that 1) Diadema has the ability to reduce skeletal body size, and 2) direction (growth or shrinkage) and rate of growth can be predicted accurately based on the urchin's body size and population density. The ability to adjust body size as density fluctuates may allow Diadema to persist when density increases, by shrinking and reducing metabolic costs, and to take advantage of decreases in density, by increasing in size and fecundity.  相似文献   

13.
The Indo‐Australian Archipelago (IAA) is the richest area of biodiversity in the marine realm, yet the processes that generate and maintain this diversity are poorly understood and have hardly been studied in the mangrove biotope. Cerithidea is a genus of marine and brackish‐water snails restricted to mangrove habitats in the Indo‐West Pacific, and its species are believed to have a short pelagic larval life. Using molecular and morphological techniques, we demonstrate the existence of 15 species, reconstruct their phylogeny and plot their geographical ranges. Sister species show a pattern of narrowly allopatric ranges across the IAA, with overlap only between clades that show evidence of ecological differentiation. These allopatric mosaic distributions suggest that speciation may have been driven by isolation during low sea‐level stands, during episodes preceding the Plio‐Pleistocene glaciations. The Makassar Strait forms a biogeographical barrier hindering eastward dispersal, corresponding to part of Wallace's Line in the terrestrial realm. Areas of maximum diversity of mangrove plants and their associated molluscs do not coincide closely. © 2013 The Natural History Museum. Biological Journal of the Linnean Society © 2013 The Linnean Society of London, 2013, 110 , 564–580.  相似文献   

14.
Summary When the common sea urchin Diadema antillarum was removed from a 50 m strip of reef in St. Thomas, US Virgin Islands, cover of upright algae and the grazing rates and densities of herbivorous parrotfish and surgeonfish increased significantly within 11–16 weeks when compared to immediately adjacent control areas. Sixteen months after removal, Diadema had recovered to 70% of original density, abundance of upright algae no longer differed between removal and control areas, and the abundance and grazing activity of herbivorous fish in the removal was approaching equivalence with control areas. On a patch reef in St. Croix that had been cleared of Diadema 10–11 years earlier (Ogden et al. 1973b), urchins had recovered to only 50–60% of original density. This reef still showed significantly higher rates of grazing by fish and a significantly greater density of parrotfish and surgeonfish than a nearby control reef where Diadema densities had not been altered. These results indicate that high Diadema densities (7–12/m2 for this study) may suppress the densities of herbivorous fish on Caribbean reefs.  相似文献   

15.
The community structure of Jamaican coral reefs has undergone drastic change since mass mortalities of the long-spined black sea urchin Diadema antillarum Philippi occurred in 1983. In the absence of Diadema, algal abundance has increased enormously, up to a mean of 95% cover or 4.6 kg wet weight · m −2. Coral cover, which was already low on some reefs following Hurricane Allen in 1980, has been further reduced by as much as 60% since 1983 by competition with algae. Densities of D. antillarum at 10 sites in 1986 ranged from 0 to 12% of pre-1983 levels. Other echinoids, which might potentially compensate for the lack of herbivory from D. antillarum, have not increased significantly in density. Numbers of herbivorous scarids and acanthurids also remain at relatively low levels, because of overfishing. In the absence of high densities of fish and sea urchins, it is likely that recent changes in community structure will continue, resulting in further replacement of corals by algae in shallow water. The impact of the urchin mass mortalities is qualitatively similar to previous experimental removals of this species. In both cases, removal of echinoids resulted in substantial increases in macroalgae. However, quantitatively, the responses of algal and coral communities to the natural die-off were significantly greater, probably due to wide differences in spatial and temporal scales of the respective perturbations.  相似文献   

16.
17.
Phylogenetic relationships among 20 nominal species of tropical lutjanine snappers (Lutjanidae) (12 from the western Atlantic, one from the eastern Pacific, and seven from the Indo‐Pacific) were inferred based on 2206 bp (712 variable, 614 parsimony informative) from three protein‐coding mitochondrial genes. Also included in the analysis were DNA sequences from two individuals, identified initially as Lutjanus apodus, which were sampled off the coast of Bahia State in Brazil (western Atlantic), and from three individuals labelled as ‘red snapper’ in the fish market in Puerto Armuelles, Panama (eastern Pacific). Bayesian posterior probabilities and maximum‐likelihood bootstrap percentages strongly supported monophyly of all lutjanines sampled and the hypothesis that western Atlantic lutjanines are derived from an Indo‐Pacific lutjanine lineage. The phylogenetic hypothesis also indicated that oceans where lutjanines are distributed (western Atlantic, eastern Pacific, and Indo‐Pacific) are not reciprocally monophyletic for the species distributed within them. There were three strongly supported clades that included all western Atlantic lutjanines: one included six species of Lutjanus from the western Atlantic, two species of Lutjanus from the eastern Pacific, and the monotypic genera Rhomboplites and Ocyurus (western Atlantic); one that included three, probably four, species of Lutjanus in the western Atlantic; and one that included Lutjanus cyanopterus (western Atlantic), an unknown species of Lutjanus from the eastern Pacific, and three species of Lutjanus from the Indo‐Pacific. Molecular‐clock calibrations supported an early Miocene diversification of an Indo‐Pacific lutjanine lineage that dispersed into the western Atlantic via the Panamanian Gateway. Divergent evolution among these lutjanines appears to have occurred both by vicariant and ecological speciation: the former following significant geographic or geological events, including both shoaling and closure of the Panamanian Gateway and tectonic upheavals, whereas the latter occurred via phenotypic diversification inferred to indicate adaptation to life in different habitats. Taxonomic revision of western Atlantic lutjanines appears warranted in that monotypic Ocyurus and Rhomboplites should be subsumed within the genus Lutjanus. Finally, it appears that retail mislabelling of ‘red snapper’ in commercial markets extends beyond the USA. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 915–929.  相似文献   

18.
The benthic grazer Diadema antillarum Philippi (Echinoidea) has been demonstrated experimentally to contribute to the control of coral community structure in shallow water. In Discovery Bay, Jamaica, West Indies, Diadema densities were manipulated over a range of 0-64/m2 with the aid of enclosures. Grazing by Diadema under primary and post-primary succession conditions were compared.Algal percent-cover decreased as Diadema density was increased. Despite the presence of high algal cover. highest coral recruitment and diversity occurred at lowest Diadema densities, with planular settlement occurring predominantly in openly exposed micro-habitats. However, since algal growth rates greatly exceeded those of corals, space was rapidly monopolized by the former, resulting in intense competition and high coral mortality. This was particularly evident in Agaricia and Porites spp. At high Diadema densities, coral recruitment was greatly depressed in at least a genus-specific manner by intense levels of biological disturbance resulting from the echinoid's abrasive grazing activities. Favia Fragum (Esper) was especially susceptible to this perturbation. The surviving coral spat were found generally in cryptic, protected areas. Here they suffered some competitive losses to other sessile epifauna and -flora, particularly coralline algae, polychaetes and forams, which were well adapted to these physical and biological conditions. Increased sedimentation also depressed coral recruitment, replacing grazing as a limiting factor for successful settlement.Optimal conditions for coral survival, competitive success, and possibly growth were found at intermediate densities due to a balance between competition for space and biological disturbance. Diadema antillarum plays an important role in controlling the distribution and abundance of coral spat in the shallow reef community.  相似文献   

19.
Environmental factors controlling the distribution of shallow-water gorgonians of Puerto Rico were inferred from a Reciprocal Averaging ordination analysis. The data set included several samples taken before and after the passage of Hurricane David and the mass mortality of the sea urchin Diadema antillarum. We could infer only a single environmental gradient associated with the distribution of gorgonians. Stations at opposite extremes of this gradient were characterized by combinations of high wave action with low topographic relief, or low wave action with high topographic relief. This gradient was also associated with sediment transport across the bottom (bedload). A detailed examination of ordination results in relation to Hurricane David and the Diadema mortality indicated that sediment transport, rather than water movement and topographic relief, is more directly related to the distribution of shallow-water gorgonians.  相似文献   

20.
A comparison of Kenyan reefs of different historical and observed levels of fishing exploitation showed that more exploited reef lagoons had greater sea urchin densities and sizes, fewer and smaller fish and less coral cover. In the most exploited lagoon the biomass of the burrowing sea urchin Echinometra mathaei increased five fold during the previous 15 years. An ecological study of the three most common omnivorous sea urchin species inhabiting hard substrate within these reef lagoons (E. mathaei, Diadema savignyi and D. setosum) suggests that they are ecologically separated by predation and avoid predators and competitors by occupying different size burrows or crevices within the lagoon. Predator removal through fishing activities may result in ecological release of the sea urchins and result in competitive exclusion of weaker competitors. The most exploited reef had a nearly monospecific barren of E. mathaei living outside burrows suggesting that E. mathaei may be the top competitor. Its ecological release appears to lead to a decrease in live coral cover, increased substrate bioerosion and eventually a loss of topographic complexity, species diversity, fish biomass and utilizable fisheries productivity. Data from the outer reef edge were more difficult to interpret but may indicate similar patterns. Within this area, physical stresses such as waves and currents may be a greater controlling force in regulating fishing activities and coral reef community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号