首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Liu X  Zhang MI  Peterson LB  O'Neil RG 《FEBS letters》2003,550(1-3):101-106
We have investigated the contribution of lipid rafts to activation of the NADPH oxidase enzyme system in neutrophils. Membrane-bound NADPH oxidase subunits are present in the lipid raft compartment of neutrophils. Cytosolic NADPH oxidase components are mainly absent from but are recruited to rafts upon Fcγ receptor activation. In parallel, protein kinase C isotypes are recruited to the rafts. Kinetic analysis of NADPH oxidase activation revealed that rafts determine the onset but not the maximal rate of enzyme activity. Thus lipid rafts serve to physically juxtapose the NADPH oxidase effector, protein kinase C and Fcγ receptor, resulting in efficient coupling.  相似文献   

3.
Like macrophages, microglia are functionally polarized into different phenotypic activation states, referred as classical and alternative. The balance of the two phenotypes may be critical to ensure proper brain homeostasis, and may be altered in brain pathological states, such as Alzheimer's disease. We investigated the role of NADPH oxidase in microglial activation state using p47(phox) and gp91(phox) -deficient mice as well as apocynin, a NADPH oxidase inhibitor during neuroinflammation induced by an intracerebroventricular injection of LPS or Aβ????. We showed that NADPH oxidase plays a critical role in the modulation of microglial phenotype and subsequent inflammatory response. We demonstrated that inhibition of NADPH oxidase or gene deletion of its functional p47(phox) subunit switched microglial activation from a classical to an alternative state in response to an inflammatory challenge. Moreover, we showed a shift in redox state towards an oxidized milieu and that subpopulations of microglia retain their detrimental phenotype in Alzheimer's disease brains. Microglia can change their activation phenotype depending on NADPH oxidase-dependent redox state of microenvironment. Inhibition of NADPH oxidase represents a promising neuroprotective approach to reduce oxidative stress and modulate microglial phenotype towards an alternative state.  相似文献   

4.
Until recently, the production of reactive oxygen species by NADPH oxidase has been considered only in the context of the oxidative damage to pathogens inside the phagosome. However, homologues of phagocytic NADPH oxidase have been found in almost all cell types, where they produce hydrogen peroxide and thereby regulate the initial intracellular stages of MAP kinase cascades. In the present work, the activation of two MAP kinase cascades, p38 and Erk1/2, during phagocytosis has been studied. It was found that phagocytosis activates both cascades. The activation of Erk1/2 is dependent, and the activation of p38 is not dependent, on the activity of NADPH oxidase. Therefore, the activation of MAP kinases in phagocytes during phagocytosis occurs by a mechanism similar to that operating in nonphagocytic cells, indicating the universality of the function of NADPH oxidases in different cell types.  相似文献   

5.
Calmodulin-dependent stimulation of the NADPH oxidase of human neutrophils   总被引:4,自引:0,他引:4  
The NADPH oxidase of human neutrophils is highly sensitive to calcium concentration and is inhibited in intact cells and cell-free preparations by various phenothiazine drugs. Addition of calmodulin to preparations of NADPH oxidase stimulates enzymatic rates from 1.4-2.5-fold. Addition of calmodulin and calcium, but not calcium alone, to NADPH oxidase preparations which have been inactivated by EDTA results in the restoration of activity. No activation is observed when membrane preparations containing latent NADPH oxidase are exposed to calcium and calmodulin. These studies suggest a role for calmodulin in the control of NADPH oxidase but that calmodulin alone is not sufficient for activation.  相似文献   

6.
The kinetics of sodium dodecyl sulfate-induced activation of respiratory burst oxidase (NADPH oxidase) in a fully soluble cell-free system from resting (control) or phorbol myristate acetate (PMA)-stimulated human neutrophils were investigated. In a cell-free system containing solubilized membranes and cytosol fractions (cytosol) derived from control neutrophils (control cell-free system), the values of Km and Vmax for NADPH of the NADPH oxidase from control neutrophils continuously increased with increasing concentrations of cytosol, but with increasing concentrations of solubilized membranes from the control neutrophils, Km values continuously decreased, suggesting cytosolic activation factor-dependent continuous changes in the affinity of NADPH oxidase to NADPH. In a cell-free system containing solubilized membranes and cytosol prepared from PMA-stimulated neutrophils, NADPH oxidase was not activated after the addition of NADPH. However, cytosol from control neutrophils activated the NADPH oxidase of PMA-stimulated neutrophils in a cell-free system. Cytosol from PMA-stimulated neutrophils did not activate the control neutrophil oxidase, although it contained no inhibitors of NADPH oxidase activation. The results suggest that, in PMA-stimulated neutrophils, cytosolic activation factors may be consumed or exhausted with an increasing period of time after the stimulation of neutrophils, and that the affinity of PMA-stimulated neutrophil NADPH oxidase to NADPH may almost be the same as that of control neutrophil oxidase. It was concluded that the affinity of NADPH oxidase to NADPH was closely associated with interaction between solubilized membranes and cytosolic activation factors, as indicated by the concentration ratio.  相似文献   

7.
S Umeki 《Life sciences》1990,46(16):1111-1118
Kinetics of activation of the NADPH oxidase in a fully soluble cell-free system from phorbol myristate acetate (PMA)-stimulated human neutrophils were investigated. In a cell-free system in which Mg2+ and sodium dodecyl sulfate, an anionic detergent required for the activation of NADPH oxidase are contained, cytosol prepared from PMA-stimulated neutrophils failed to activate PMA-stimulated neutrophil oxidase. However, cytosol prepared from resting (control) neutrophils was capable of activating PMA-stimulated neutrophil oxidase in a cell-free system in which its Km for NADPH was almost similar to that of control neutrophil oxidase. Cytosol from PMA-stimulated neutrophils could not activate control neutrophil oxidase, although it did not contain any inhibitors of NADPH oxidase activation. These results suggest that, in PMA-stimulated neutrophils, cytosolic activation factors may be consumed or exhausted, and that the affinity for NADPH of PMA-stimulated neutrophil oxidase may be the same as that of control neutrophil oxidase.  相似文献   

8.
Elevation of blood homocysteine (Hcy) levels (hyperhomocysteinemia) is a risk factor for cardiovascular disorders. We previously reported that oxidative stress contributed to Hcy-induced inflammatory response in vascular cells. In this study, we investigated whether NADPH oxidase was involved in Hcy-induced superoxide anion accumulation in the aorta, which leads to endothelial dysfunction during hyperhomocysteinemia. Hyperhomocysteinemia was induced in rats fed a high-methionine diet. NADPH oxidase activity and the levels of superoxide and peroxynitrite were markedly increased in aortas isolated from hyperhomocysteinemic rats. Expression of the NADPH oxidase subunit p22 phox increased significantly in these aortas. Administration of an NADPH oxidase inhibitor (apocynin) not only attenuated aortic superoxide and peroxynitrite to control levels but also restored endothelium-dependent relaxation in the aortas of hyperhomocysteinemic rats. Transfection of human endothelial cells or vascular smooth muscle cells with p22 phox siRNA to inhibit NADPH oxidase activation effectively abolished Hcy-induced superoxide anion production, thus indicating the direct involvement of NADPH oxidase in elevated superoxide generation in vascular cells. Taken together, these results suggest that Hcy-stimulated superoxide anion production in the vascular wall is mediated through the activation of NADPH oxidase, which leads to endothelial dysfunction during hyperhomocysteinemia.  相似文献   

9.
The NADPH oxidase of human neutrophils is highly sensitive to calcium concentration and is inhibited in intact cells and cell-free preparations by various phenothiazine drugs. Addition of calmodulin to preparations of NADPH oxidase stimulates enzymatic rates from 1.4–2.5-fold. Addition of calmodulin and calcium, but not calcium alone, to NADPH oxidase preparations which have been inactivated by EDTA results in the restoration of activity. No activation is observed when membrane preparations containing latent NADPH oxidase are exposed to calcium and calmodulin. These studies suggest a role for calmodulin in the control of NADPH oxidase but that calmodium alone is not sufficient for activation.  相似文献   

10.
The enzyme NADPH oxidase is regulated by phospholipase D in intact neutrophils and is activated by phosphatidic acid (PA) plus diacylglycerol (DG) in cell-free systems. We showed previously that cell-free NADPH oxidase activation by these lipids involves both protein kinase-dependent and -independent pathways. Here we demonstrate that only the protein kinase-independent pathway is operative in a cell-free system of purified and recombinant NADPH oxidase components. Activation by PA + DG was ATP-independent and unaffected by the protein kinase inhibitor staurosporine, indicating the lack of protein kinase involvement. Both PA and DG were required for optimal activation to occur. The drug reduced activation of NADPH oxidase by either arachidonic acid or PA + DG, with IC(50) values of 46 and 25 microm, respectively. The optimal concentration of arachidonic acid or PA + DG for oxidase activation was shifted to the right with, indicating interference of the drug with the interaction of lipid activators and enzyme components. inhibited the lipid-induced aggregation/sedimentation of oxidase components p47(phox) and p67(phox), suggesting a disruption of the lipid-mediated assembly process. The direct effects of on NADPH oxidase activation complicate its use as a "specific" inhibitor of DG kinase. We conclude that the protein kinase-independent pathway of NADPH oxidase activation by PA and DG involves direct interaction with NADPH oxidase components. Thus, NADPH oxidase proteins are functional targets for these lipid messengers in the neutrophil.  相似文献   

11.
Toll receptor-mediated regulation of NADPH oxidase in human dendritic cells   总被引:9,自引:0,他引:9  
Activation of NADPH oxidase represents an essential mechanism of defense against pathogens. Dendritic cells (DC) are phagocytic cells specialized in Ag presentation rather than in bacteria killing. Human monocyte-derived DC were found to express the NADPH oxidase components and to release superoxide anions in response to phorbol esters and phagocytic agonists. The NADPH oxidase components p47phox and gp91phox were down-regulated during monocyte differentiation to DC, and maturation of DC with pathogen-derived molecules, known to activate TLRs, increased p47phox and gp91phox expression and enhanced superoxide anions release. Similar results were obtained with plasmacytoid DC following maturation with influenza virus. In contrast, activation of DC by immune stimuli (CD40 ligand) did not regulate NADPH oxidase components or respiratory burst. NADPH oxidase-derived oxygen radicals did not play any role in DC differentiation, maturation, cytokine production, and induction of T cell proliferation, as based on the normal function of DC generated from chronic granulomatous disease patients and the use of an oxygen radical scavenger. However, NADPH oxidase activation was required for DC killing of intracellular Escherichia coli. It is likely that the selective regulation of oxygen radicals production by pathogen-activated DC may function to limit pathogen dissemination during DC trafficking to secondary lymphoid tissues.  相似文献   

12.
Guanine nucleotide-binding regulatory proteins (G proteins) transduce a remarkably diverse group of extracellular signals to a relatively limited number of intracellular target enzymes. In the neutrophil, transduction of the signal following fMet-Leu-Phe receptor-ligand interaction is mediated by a pertussis toxin substrate (Gi) that activates inositol-specific phospholipase C. We have utilized a plasma membrane-containing fraction from unstimulated human neutrophils as the target enzyme to explore the role of G proteins in arachidonate and cytosolic cofactor-dependent activation of the NADPH-dependent O-2-generating oxidase. When certain guanine nucleotides or their nonhydrolyzable analogues were present during arachidonate and cytosolic cofactor-dependent activation, they exerted substantial dose-dependent effects. The GTP analogue, GTP gamma S, caused a 2-fold increase in NADPH oxidase activation (half-maximal stimulation, 1.1 microM). Either GDP or its nonhydrolyzable analogue, GDP beta S, inhibited up to 80% of the basal NADPH oxidase activation (Ki GDP = 0.12 mM, GDP beta S = 0.23 mM). GTP caused only slight and variable stimulation, whereas F-, an agent known to promote the active conformation of G proteins, caused a 1.6-fold stimulation of NADPH oxidase activation. NADPH oxidase activation in the cell-free system was absolutely and specifically dependent on Mg2+. Although O2- production in response to fMet-Leu-Phe was inhibited greater than 90% in neutrophils pretreated with pertussis toxin, cytosolic cofactor and target oxidase membranes from neutrophils treated with pertussis toxin showed no change in basal- or GTP gamma S-stimulated NADPH oxidase activation. Cholera toxin treatment of neutrophils also had no effect on the cell-free activation system. Our results suggest a role for a G protein that is distinct from Gs or Gi in the arachidonate and cytosolic cofactor-dependent NADPH oxidase cell-free activation system.  相似文献   

13.
Taurine has been shown to prevent cardiomyocyte apoptosis. This study investigated the effects of taurine on NADPH oxidase and calpain activation in mediating apoptosis in cardiomyocytes. Apoptosis was induced by norepinephrine (NE) in cultured adult rat ventricular cardiomyocytes. NE (5 microM) increased NADPH oxidase activation and reactive oxygen species (ROS) production and induced apoptosis. These effects of NE on cardiomyocytes were diminished by taurine (0.5 mg/kg) but not beta-alanine. Inhibition of gp91(phox)-NADPH oxidase or ROS production protected cardiomyocytes from apoptosis. NE also induced calpain-1 activation in cardiomyocytes. This effect of NE on calpain was abrogated by gp91(phox)-NADPH oxidase inhibition or ROS scavengers and was mimicked by H(2)O(2) (25 microM) in cardiomyocytes. Pharmacological inhibitors of calpain or overexpression of calpastatin, a specific calpain inhibitor, blocked calpain activation and prevented cardiomyocyte apoptosis during NE stimulation. Furthermore, taurine treatment inhibited NE- or H(2)O(2)-induced calpain activation in cardiomyocytes. In conclusion, NADPH oxidase induces calpain activation, leading to apoptosis in NE-induced cardiomyocytes. Taurine inhibits NADPH oxidase and calpain activation. Thus, inhibition of NADPH oxidase-mediated calpain activation may be an important mechanism for taurine's antiapoptotic action in cardiomyocytes.  相似文献   

14.
We review herein the definition of the NADPH oxidase-activating site in human neutrophils and eosinophils, together with the new biochemical findings of the assembly of NADPH oxidase components and the signal transduction for the activation of NADPH oxidase. The activation of this enzyme is associated with multiple interrelated signaling pathways. Upon cell stimulation, the second messengers act on the assembly of NADPH oxidase components. The cytosolic components are first phosphorylated, and then associated with the membrane components. Small GTP-binding proteins and cytoskeletal components also participate in the activation of the NADPH oxidase. The cytochemical findings demonstrate that the superoxide generated by NADPH oxidase activity is initially localized in distinct types of intracellular granules, and not at the plasma membrane as previously believed. Thus, the assembly of NADPH oxidase components possibly occurs at the limiting membrane of the intracellular compartments. The oxidant-producing compartments mobilize and become associated with the plasma membrane upon cell stimulation with soluble stimulants, or fuse to phagosomes upon stimulation with particulate stimulants. Accordingly, superoxide is released to the extracellular space and into phagosomes in proportion to the oxidant-producing intracellular granule association with the plasma membrane and with the phagosomal membrane, respectively.  相似文献   

15.
Evidences have been provided by many laboratories that the activation of the NADPH oxidase in neutrophils by formyl-methionyl-leucyl-phenylalanine (FMLP) is strictly linked to a transduction pathway that involves the stimulation, via GTP binding protein, of the phosphoinositide turnover and the increase in [Ca2+]i. The results presented in this paper demonstrate that FMLP can activate the NADPH oxidase by triggering a transduction pathway completely independent of phosphoinositide turnover and Ca2+ changes. In fact: i) Ca2+-depleted neutrophils do not respond to FMLP with the activation of phosphoinositide hydrolysis and NADPH oxidase. Both the responses are restored by the addition of exogenous Ca2+. ii) In Ca2+-depleted neutrophils phorbol-myristate-acetate (PMA) activates the NADPH oxidase. iii) The pretreatment of Ca2+-depleted neutrophils with non stimulatory doses of PMA restores the activation of the NADPH oxidase but not of the turnover of phosphoinositides by FMLP. This priming effect of PMA and the role of this phosphoinositide and Ca2+-independent pathway for the stimulation of the NADPH oxidase by receptors mediated stimuli are discussed.  相似文献   

16.
NADPH oxidase is a superoxide-generating, membrane-bound complex activated in stimulated phagocytes or in a reconstituted system consisting of membranes, cytosolic components and arachidonate or SDS. To delineate mechanism of oxidase activation in the cell-free system, hydrolysis of phosphoinositides in the combined membrane-cytosol oxidase mixture was investigated. Arachidonate promoted hydrolysis of membrane-[3H]-phosphatidylinositol by cytosolic phospholipase C. PI hydrolysis was similarly supported by other unsaturated fatty acids and by SDS. Unlike activation of the NADPH oxidase, PI hydrolysis required the presence of calcium ions. Implications of these findings to the mechanism of NADPH oxidase activation are discussed.  相似文献   

17.
Activation of phagocytic NADPH oxidase requires association of its cytosolic subunits with the membrane-bound flavocytochrome. Extensive phosphorylation of the p47(phox) subunit of NADPH oxidase marks the initiation of this activation process. The p47(phox) subunit then translocates to the plasma membrane, bringing the p67(phox) subunit to cytochrome b558 to form the active NADPH oxidase complex. However, the detailed mechanism for targeting the p47(phox) subunit to the cell membrane during activation still remains unclear. Here, we show that the p47(phox) PX domain is responsible for translocating the p47(phox) subunit to the plasma membrane for subsequent activation of NADPH oxidase. We also demonstrate that translocation of the p47(phox) PX domain to the plasma membrane is not due to interactions with phospholipids but rather to association with the actin cytoskeleton. This association is mediated by direct interaction between the p47(phox) PX domain and moesin.  相似文献   

18.
Angiotensin II stimulates NADPH oxidase activity in vascular cells. However, it is not fully understood whether angiotensin II, which plays an important role in heart failure, stimulates NADPH oxidase activation and expression in cardiac myocytes. Previous studies have shown that angiotensin II induces myocyte apoptosis, but whether the change is mediated via NADPH oxidase remains to be elucidated. In this study we proposed to determine whether angiotensin II stimulated NADPH oxidase activation and NADPH oxidase subunit p47-phox expression in H9C2 cardiac muscle cells. If so, we would determine whether the NADPH oxidase inhibitor apocynin prevented angiotensin II-induced apoptosis. The results showed that angiotensin II increased NADPH oxidase activity, p47-phox protein and mRNA expression, intracellular reactive oxygen species, and apoptosis in H9C2 cells. Angiotensin II elevated p38 mitogen-activated protein kinase (MAPK) activity, decreased Bcl-2 protein, and increased Bax protein and caspase-3 activity. Apocynin treatment inhibited angiotensin II-induced NADPH oxidase activation and increases in p47-phox expression, intracellular reactive oxygen species, and apoptosis. The effect of apocynin on apoptosis was associated with reduced p38 MAPK activity, increased Bcl-2 protein, and decreased Bax protein and caspase-3 activity. These results suggest that angiotensin II-induced apoptosis is mediated via NADPH oxidase activation probably through p38 MAPK activation, a decrease in Bcl-2 protein, and caspase activation.  相似文献   

19.
NADPH oxidase is a crucial enzyme in mediating antimicrobial host defense and in regulating inflammation. Patients with chronic granulomatous disease, an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates (ROIs), suffer from life-threatening bacterial and fungal infections. The mechanisms by which NADPH oxidase mediate host defense are unclear. In addition to ROI generation, neutrophil NADPH oxidase activation is linked to the release of sequestered proteases that are posited to be critical effectors of host defense. To definitively determine the contribution of NADPH oxidase versus neutrophil serine proteases, we evaluated susceptibility to fungal and bacterial infection in mice with engineered disruptions of these pathways. NADPH oxidase-deficient mice (p47(phox-/-)) were highly susceptible to pulmonary infection with Aspergillus fumigatus. In contrast, double knockout neutrophil elastase (NE)(-/-)×cathepsin G (CG)(-/-) mice and lysosomal cysteine protease cathepsin C/dipeptidyl peptidase I (DPPI)-deficient mice that are defective in neutrophil serine protease activation demonstrated no impairment in antifungal host defense. In separate studies of systemic Burkholderia cepacia infection, uniform fatality occurred in p47(phox-/-) mice, whereas NE(-/-)×CG(-/-) mice cleared infection. Together, these results show a critical role for NADPH oxidase in antimicrobial host defense against A. fumigatus and B. cepacia, whereas the proteases we evaluated were dispensable. Our results indicate that NADPH oxidase dependent pathways separate from neutrophil serine protease activation are required for host defense against specific pathogens.  相似文献   

20.
NADPH oxidase has been considered a major source of reactive oxygen species in phagocytic and non-phagocytic cells. Apoptosis linked to oxidative stress has been implicated in pancreatitis. Recently, we demonstrated that NADPH oxidase subunits Nox1, p27phox, p47phox, and p67phox are constitutively expressed in pancreatic acinar cells, which are activated by cerulein, a cholecystokinin analogue. Cerulein induces an acute and edematous form of pancreatitis. We investigated whether inhibition of NADPH oxidase by diphenyleneiodonium suppresses the production of reactive oxygen species and apoptosis by determining viable cell numbers, DNA fragmentation, TUNEL staining, caspase-3 activity, and the expression of apoptosis-inducing factor in pancreatic acinar AR42J cells stimulated with cerulein. Inhibition on NADPH oxidase by diphenyleneiodonium was assessed by the alterations in NADPH oxidase activity and translocation of the cytosolic subunits p67phox and p47phox to the membrane. Intracellular Ca2+ level was monitored to investigate the relationship between NADPH oxidase and Ca2+ in cells stimulated with cerulein. As a result, cerulein induced the activation of NADPH, increased production of reactive oxygen species, and apoptotic indices determined by the expression of apoptosis-inducing factor, caspase-3 activation, TUNEL staining, DNA fragmentation, and cell viability. Treatment with DPI inhibited cerulein-induced activation of NADPH oxidase, the production of reactive oxygen species, and apoptosis, but not the increase of intracellular Ca2+ levels in pancreatic acinar cells. These results demonstrate that the cerulein-induced increase in intracellular Ca2+ level may be an upstream event of NADPH oxidase activation. Diphenyleneiodonium, an NADPH oxidase inhibitor, inhibits the expression of apoptosis-inducing factor and caspase-3 activation, and thus apoptosis in pancreatic acinar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号