首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and biological evaluation of a series of 2-azole and 2-thioazole isoflavones as potential aromatase inhibitors are described. Differences in inhibitory activity of triazole and imidazole inhibitors are rationalized with density functional theory to expose a key difference in the electronic structure of these molecules. In addition, difference binding spectra of inhibitors to immunoaffinity-purified aromatase produces classical Type II spectra consistent with coordination of the nitrogen lone pair electrons to the aromatase P450 heme.  相似文献   

2.
A computer-aided drug design strategy leads to the identification of a new class of p38 inhibitors based on the 2-tolyl-(1,2,3-triazol-1-yl-4-carboxamide) scaffold. The tolyl triazole amides provided a potent platform amenable to optimization. Further exploration leads to compounds with greater than 100-fold improvement in binding affinity to p38. Derivatives prepared to alter the physicochemical properties produced inhibitors with IC(50)'s in human whole blood as low as 83 nM.  相似文献   

3.
Human β‐galactoside α‐2,6‐sialyltransferase I (hST6Gal I) catalyses the synthesis of sialylated glycoconjugates involved in cell–cell interactions. Overexpression of hST6Gal I is observed in many different types of cancers, where it promotes metastasis through altered cell surface sialylation. A wide range of sialyltransferase (ST) inhibitors have been developed based on the natural donor, cytidine 5′‐monophosphate N‐acetylneuraminic acid (CMP‐Neu5Ac). Of these, analogues that are structurally similar to the transition state exhibit the highest inhibitory activity. In order to design inhibitors that are readily accessible synthetically and with favourable pharmacokinetic properties, an investigation of the replacement of the charged phosphodiester‐linker, present in many ST inhibitors, with a potential neutral isostere such as a carbamate or a 1,2,3‐triazole has been undertaken. To investigate this, molecular docking and molecular dynamics simulations were performed. These simulations provided an insight into the binding mode of previously reported phosphodiester‐linked ST inhibitors and demonstrated that targeting the proposed sialyl acceptor site is a viable option for producing selective inhibitors. The potential for a carbamate‐ or triazole‐linker as an isosteric replacement for the phosphodiester in transition‐state analogue ST inhibitors was established using molecular docking. Molecular dynamics simulations of carbamate‐ and phosphodiester‐linked compounds revealed that both classes exhibit consistent interactions with hST6Gal I. Overall, the results obtained from this study provide a rationale for synthetic and biological evaluation of triazole‐ and carbamate‐linked transition‐state analogue ST inhibitors as potential new antimetastatic agents. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
We have recently developed a new synthetic methodology that provided both N-aryl-5-hydroxytriazoles and N-pyridine-4-alkyl triazoles. A selection of these products was carried through virtual screening towards targets that are contemporary and validated for drug discovery and development. This study determined a number of potential structure target dyads of which N-pyridinium-4-carboxylic-5-alkyl triazole displayed the highest score specificity towards KAT2A. Binding affinity tests of abovementioned triazole and related analogs towards KAT2A confirmed the predictions of the in-silico assay. Finally, we have run in vitro inhibition assays of selected triazoles towards KAT2A; the ensemble of binding and inhibition assays delivered pyridyl-triazoles carboxylates as the prototype of a new class of inhibitors of KAT2A.  相似文献   

5.
Extracellular adenosine 5′-triphosphate (ATP) triggers the P2X7 receptor (P2X7R) ionic channel to stimulate the release of the interleukin-IL-1β cytokine into macrophages. The current study explored the reaction of six structurally diverse triazole derivatives on P2X7-mediated dye uptake into murine peritoneal macrophages. P2X7R activity determined by ATP-evoked fluorescent dye uptake. Triazole derivatives toxicity measured using dextran rhodamine exclusion based colorimetric assay. A740004 and BBG, both P2X7R antagonist, inhibited ATP-induced dye uptake. In contrast, the derivatives 5a, 5b, 5e, and 5f did not diminish P2X7R activity in concentrations until 100?µM. 5c and 5d analogs caused a potent inhibitory activity on P2X7-induced dye uptake. Dextran Rhodamine exclusion measurements after 24?h of continuous treatment with triazole derivatives indicated a moderated toxicity for all molecules. In conclusion, this study showed that a series of new hybrid 1,2,3-triazolic naphthoquinones reduces P2X7R-induced dye uptake into murine macrophages. In silico analysis indicates a good pharmacokinetic profile and molecular docking results of these analogs indicate the potential to bind into an allosteric site located into the P2X7R pore and juxtaposed with the ATP binding pocket. In this manner, the compounds 5c and 5d may be used as a scaffold for new P2X7R inhibitors with reduced toxicity, and good anti-inflammatory activity.  相似文献   

6.
A small set of triazole bisphosphonates has been prepared and tested for the ability to inhibit geranylgeranyltransferase II (GGTase II). The compounds were prepared through use of click chemistry to assemble a central triazole that links a polar head group to a hydrophobic tail. The resulting compounds were tested for their ability to inhibit GGTase II in an in vitro enzyme assay and also were tested for cytotoxic activity in an MTT assay with the human myeloma RPMI-8226 cell line. The most potent enzyme inhibitor was the triazole with a geranylgeranyl tail, which suggests that inhibitors that can access the enzyme region that holds the isoprenoid tail will display greater activity.  相似文献   

7.
Recently, oleanolic acid was found to be an inhibitor of glycogen phosphorylase. For further structural modification, we have synthesized several dimers of oleanolic acid by using amide, ester, or triazole linkage with click chemistry. The click chemistry was shown to be the most efficient method for the dimer synthesis. Nearly quantitative yield of triazole‐linked dimers was obtained. Biological evaluation of the synthesized dimers as inhibitors of glycogen phosphorylase has been described. Four of six dimers exhibited inhibitory activity against rabbit muscle glycogen phosphorylase a (RMGPa), with compounds 2 and 7 as the most potent inhibitors, which displayed an IC50 value (ca. 3 μM ) lower than that of oleanolic acid (IC50=14 μM ).  相似文献   

8.
4-Aryl-5-pyridyl and 4-aryl-5-pyrimidyl based inhibitors of TNF-alpha production, which contain a novel triazole 5-member heterocyclic core, are described. Many pyridyl triazoles containing either an alkyl ether or a substituted aryl side chain on the triazole core showed sub-micromolar activity against LPS-induced TNF-alpha, while pyrimidyl triazoles containing an ethoxymethyl side chain exhibited even better inhibitory activity. Secondary screening data are presented for the pyrimidyl triazoles. Triazole 14e combined excellent potency with good oral bioavailability in the rat.  相似文献   

9.
A unified strategy was conceived and implemented to deliver conformationally constrained anilides based on their preferred cis-amide conformers. The imidazole/triazole mimicing amide bonds were designed, building upon an earlier discovery of a novel series of tricyclic lactams MK2 kinase inhibitors. This approach enabled rapid, modular synthesis of structurally novel analogs. The efficient SAR development led to the discovery of low molecular weight and potent MK2 non-ATP competitive inhibitors with good ligand efficiency, which led to improved permeability and oral exposure in rats.  相似文献   

10.
11.
A novel class of pan-Pim kinase inhibitors was designed by modifying the CK2 inhibitor CX-4945. Introduction of a triazole or secondary amide functionality on the C-7 position and 2'-halogenoanilines on C-5 resulted in potent inhibitors of the Pim-1 and Pim-2 isoforms, with many analogs active at single digit nanomolar concentrations. The molecules inhibited the phosphorylation at Serine 112 of the apoptosis effector BAD, and had potent antiproliferative effects on the AML cell line MV-4-11 (IC(50) <30 nM). This work delivers an excellent lead-optimization platform for Pim targeting anticancer therapies.  相似文献   

12.
Azole and triazole drugs are cytochrome P450 inhibitors widely used as fungal antibiotics and possessing potent antimycobacterial activity. We present here the crystal structure of Mycobacterium tuberculosis cytochrome P450 CYP121 in complex with the triazole drug fluconazole, revealing a new azole heme ligation mode. In contrast to other structurally characterized cytochrome P450 azole complexes, where the azole nitrogen directly coordinates the heme iron, in CYP121 fluconazole does not displace the aqua sixth heme ligand but occupies a position that allows formation of a direct hydrogen bond to the aqua sixth heme ligand. Direct ligation of fluconazole to the heme iron is observed in a minority of CYP121 molecules, albeit with severe deviations from ideal geometry due to close contacts with active site residues. Analysis of both ligand-on and -off structures reveals the relative position of active site residues derived from the I-helix is a key determinant in the relative ratio of on and off states. Regardless, both ligand-bound states lead to P450 inactivation by active site occlusion. This previously unrecognized means of P450 inactivation is consistent with spectroscopic analyses in both solution and in the crystalline form and raises important questions relating to interaction of azoles with both pathogen and human P450s.  相似文献   

13.
The plant growth-retardant uniconazole (UNI), a triazole inhibitor of gibberellin biosynthetic enzyme (CYP701A), inhibits multiple P450 enzymes including ABA 8′-hydroxylase (CYP707A), a key enzyme in ABA catabolism. Azole P450 inhibitors bind to a P450 active site by both coordinating to the heme-iron atom via sp2 nitrogen and interacting with surrounding protein residues through a lipophilic region. We hypothesized that poor selectivity of UNI may result from adopting a distinct conformation and orientation for different active sites. Based on this hypothesis, we designed and synthesized novel UNI analogs with a disubstituted azole ring (DSI). These analogs were expected to have higher selectivity than UNI because the added functional group may interact with the active site to restrict orientation of the molecule in the active site. DSI-505ME and DSI-505MZ, which have an imidazolyl group with a methyl 5-acrylate, strongly inhibited recombinant CYP707A3, with no growth-retardant effect.  相似文献   

14.
15.
Plant growth retardants as tools in physiological research   总被引:11,自引:0,他引:11  
Besides being applied in agriculture and horticulture, the new types of plant growth retardants from norbornanodiazetine, triazole, pyrimidine, 4-pyridine and imidazole structure are increasingly used in physiological research. As inhibitors of special cytochrome P -450 dependent monooxygenases they allow valuable insights in the regulation of terpenoid metabolism concerning phytohormones and sterols, thus showing relations to cell division, cell elongation and senescence.  相似文献   

16.
Novel analogs of SGLT2 inhibitors containing the 1,2,3-triazole motif were designed and synthesized for urinary glucose excretion evaluation. The C-glucosides with triazole aglycone can be easily constructed by click chemistry. Most of the synthesized compounds increased urinary glucose excretion and demonstrated inhibition of glucose transport.  相似文献   

17.
Freeze-frame click chemistry is a proven approach for design in situ of high affinity ligands from bioorthogonal, reactive building blocks and macromolecular template targets. We recently described in situ design of femtomolar reversible inhibitors of fish and mammalian acetylcholinesterases (EC 3.1.1.7; AChEs) using several different libraries of acetylene and azide building blocks. Active center gorge geometries of those AChEs are rather similar and identical triazole inhibitors were detected in situ when incubating the same building block libraries in different AChEs. Drosophila melanogaster AChE crystal structure and other insect AChE homology models differ more in their overall 3D structure than other members of the cholinesterase family. The portion of the gorge proximal to the catalytic triad and choline binding site has a approximately 50% reduction in volume, and the gorge entrance at the peripheral anionic site (PAS) is more constricted than in the fish and mammalian AChEs. In this communication we describe rationale for using purified recombinant Drosophila AChE as a template for in situ reaction of tacrine and propidium based libraries of acetylene and azide building blocks. The structures of resulting triazole inhibitors synthesized in situ are expected to differ appreciably from the fish and mammalian AChEs. While the latter AChEs exclusively promote synthesis of syn-substituted triazoles, the best Drosophila AChE triazole inhibitors were always anti-substituted. The anti-regioisomer triazoles were by about one order of magnitude better inhibitors of Drosophila than mammalian and fish AChEs. Moreover, the preferred site of acetylene+azide reaction in insect AChE and the resulting triazole ring formation shifts from near the base of the gorge to closer to its rim due to substantial differences of the gorge geometry in Drosophila AChE. Thus, in addition to synthesizing high affinity, lead inhibitors in situ, freeze-frame, click chemistry has capacity to generate species-specific AChE ligands that conform to the determinants in the gorge.  相似文献   

18.
Sphingosine kinase (SphK) has emerged as an attractive target for cancer therapeutics due to its role in cell survival. SphK phosphorylates sphingosine to form sphingosine 1-phosphate (S1P), which has been implicated in cancer growth and survival. SphK exists as two different isotypes, namely SphK1 and SphK2, which play different roles inside the cell. In this report, we describe SphK inhibitors based on the immunomodulatory drug, FTY720, which is phosphorylated by SphK2 to generate a S1P mimic. Structural modification of FTY720 provided a template for synthesizing new inhibitors. A diversity-oriented synthesis generated a library of SphK inhibitors with a novel scaffold and headgroup. We have discovered subtype selective inhibitors with K(i)'s in the low micromolar range. This is the first report describing quaternary ammonium salts as SphK inhibitors.  相似文献   

19.
Gene duplications in rodents have given rise to a family of proteases that are expressed exclusively in placenta. To define the biological role of these enzymes specific inhibitors are needed to differentiate their activities from other more ubiquitously expressed proteases, such as cathepsins B and L. Libraries of peptidyl inhibitors based upon a 4-cyclohexanone pharmacophore were screened for inhibition of cathepsins P, L, and B. The tightest binding dipeptidyl inhibitor for cathepsin P contained Tyr in P(2) and Trp in P(2)('), consistent with the specificity of this enzyme for hydrophobic amino acids at these sites in synthetic substrates. An inhibitor containing Trp in both P(2) and P(2)(') provided better discrimination between cathepsin P and cathepsins B and L. Extension of the inhibitors to include P(3), and P(3)(') amino acids identified an inhibitor with Trp in P(2), P(2)('), and P(3), and Phe in P(3)(') that bound to cathepsin P with a K(i) of 32 nM. This specificity for inhibitors with hydrophobic aromatic amino acids in these four positions is unique among the lysosomal cysteine proteases. This inhibitor bound to cathepsin P an order of magnitude tighter than to mouse and human cathepsin L and two orders of magnitude tighter than to human cathepsin B. Cbz-Trp-Trp-4-cyclohexanone-Trp-Phe-OMe can discriminate cathepsin P from cathepsins B and L and consequently can be used to specifically inhibit and identify cathepsin P in cellular systems.  相似文献   

20.
New Lp-PLA2 inhibitors were synthesized by the bioisosteric replacement of the amide group of Darapladib with an imidazole or a triazole. Unfortunately, the inhibitory activities of these derivatives were lower than that of Darapladib. But interestingly, a series of quaternary ammonium salts that were isolated as by-products during this synthetic work were found with high potency. Of these by-products, compound 22c showed a similar profile to Darapladib both in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号