首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Houston P  Simon PJ  Broach JR 《Genetics》2004,166(3):1187-1197
Haploid Saccharomyces can change mating type through HO-endonuclease cleavage of an expressor locus, MAT, followed by gene conversion using one of two repository loci, HML or HMR, as donor. The mating type of a cell dictates which repository locus is used as donor, with a cells using HML and alpha cells using HMR. This preference is established in part by RE, a locus on the left arm of chromosome III that activates the surrounding region, including HML, for recombination in a cells, an activity suppressed by alpha 2 protein in alpha cells. We have examined the ability of RE to stimulate different forms of interchromosomal recombination. We found that RE exerted an effect on interchromosomal mating-type switching and on intrachromosomal homologous recombination but not on interchromosomal homologous recombination. Also, even in the absence of RE, MAT alpha still influenced donor preference in interchromosomal mating-type switching, supporting a role of alpha 2 in donor preference independent of RE. These results suggest a model in which RE affects competition between productive and nonproductive recombination outcomes. In interchromosome gene conversion, RE enhances both productive and nonproductive pathways, whereas in intrachromosomal gene conversion and mating-type switching, RE enhances only the productive pathway.  相似文献   

2.
The budding yeast INO80 complex has a role in remodeling chromatin structure, and the SWR1 complex replaces a H2A/H2B dimer with a variant dimer, H2A.Z (Htz1)/H2B. It has been reported that these chromatin remodeling complexes contain Arp4 (actin-related protein) and actin in common and are recruited to HO endonuclease-induced DNA double-strand break (DSB) site. Reportedly, Ino80 can evict nucleosomes surrounding a HO-induced DSB; however, it has no apparent role to play in the repair of HO-induced DSB. Here we show that an essential factor for INO80 chromatin remodeling activity, Arp8, is involved in damage-induced sister chromatid recombination and interchromosomal recombination between heteroalleles. In contrast, arp6 mutants are proficient for recombination, indicating that the SWR1 complex does not promote recombination. Our data suggest that the remodeling of chromatin by the INO80 complex facilitates efficient homologous recombination upon DNA damages.  相似文献   

3.
We tested the role of histone deacetylases (HDACs) in the homologous recombination process. A tissue-culture based homology-directed repair assay was used in which repair of a double-stranded break by homologous recombination results in gene conversion of an inactive GFP allele to an active GFP gene. Our rationale was that hyperacetylation caused by HDAC inhibitor treatment would increase chromatin accessibility to repair factors, thereby increasing homologous recombination. Contrary to expectation, treatment of cells with the inhibitors significantly reduced homologous recombination activity. Using RNA interference to deplete each HDAC, we found that depletion of either HDAC9 or HDAC10 specifically inhibited homologous recombination. By assaying for sensitivity of cells to the interstrand cross-linker mitomycin C, we found that treatment of cells with HDAC inhibitors or depletion of HDAC9 or HDAC10 resulted in increased sensitivity to mitomycin C. Our data reveal an unanticipated function of HDAC9 and HDAC10 in the homologous recombination process.  相似文献   

4.
In plants, the observed low frequency of gene targeting and intrachromosomal recombination contrasts markedly with the efficient extrachromosomal recombination of DNA. Thus, chromatin accessibility can have a major influence on the recombination frequency of chromosomal DNA in vivo. An Arabidopsis mutant hypersensitive to a range of DNA-damaging treatments (UV-C, X-rays, methyl methanesulfonate and mitomycin C) is also defective in somatic intrachromosomal homologous recombination. The wild-type gene encodes a protein closely related to the structural maintenance of chromosomes (SMC) family involved in structural changes in chromosomes. Although loss of SMC function is lethal in other eukaryotes, growth of the Arabidopsis mutant is normal in the absence of genotoxic treatments. This suggests a surprisingly specialized function for this protein in plants, and provides the first in vivo evidence for the involvement of an SMC protein in recombinational DNA repair. It is possible that SMC-like proteins in plants alleviate suppressive chromatin structure limiting homologous recombination in somatic cells.  相似文献   

5.
Onoda F  Takeda M  Seki M  Maeda D  Tajima J  Ui A  Yagi H  Enomoto T 《DNA Repair》2004,3(4):429-439
SMC6 (RHC18) in Saccharomyces cerevisiae, which is a homologue of the Schizosaccharomyces pombe rad18+ gene and essential for cell viability, encodes a structural maintenance of chromosomes (SMC) family protein. In contrast to the rest of the SMC family of proteins, Smc1-Smc4, which are the components of cohesin or condensin, little is known about Smc6. In this study, we generated temperature sensitive (ts) smc6 mutants of budding yeast and characterized their properties. One ts-mutant, smc6-56, ceased growth soon after up-shift to a non-permissive temperature, arrested in the late S and G2/M phase, and gradually lost viability. smc6-56 cells at a permissive temperature showed a higher sensitivity than wild-type cells to various DNA damaging agents including methyl methanesulfonate (MMS). The rad52 smc6-56 double mutant showed a sensitivity to MMS similar to that of the rad52 single mutant, indicating that Smc6 is involved in a pathway that requires Rad52 to function. Moreover, no induction of interchromosomal recombination and sister chromatid recombination was observed in smc6-56 cells, which occurred in wild-type cells upon exposure to MMS.  相似文献   

6.
It has been previously shown that genes transcribed by RNA polymerase II (RNAP II) are subject to position effect variegation when located near yeast telomeres. This telomere position effect requires a number of gene products that are also required for silencing at the HML and HMR loci. Here, we show that a null mutation of the DNA repair gene RAD6 reduces silencing of the HM loci and lowers the mating efficiency of MATa strains. Likewise, rad6-delta reduces silencing of the telomere-located RNAP II-transcribed genes URA3 and ADE2. We also show that the RNAP III-transcribed tyrosyl tRNA gene, SUP4-o, is subject to position effect variegation when located near a telomere and that this silencing requires the RAD6 and SIR genes. Neither of the two known Rad6 binding factors, Rad18 and Ubr1, is required for telomeric silencing. Since Ubrl is the recognition component of the N-end rule-dependent protein degradation pathway, this suggests that N-end rule-dependent protein degradation is not involved in telomeric silencing. Telomeric silencing requires the amino terminus of Rad6. Two rad6 point mutations, rad6(C88A) and rad6(C88S), which are defective in ubiquitin-conjugating activity fail to complement the silencing defect, indicating that the ubiquitin-conjugating activity of RAD6 is essential for full telomeric silencing.  相似文献   

7.
Soustelle C  Vedel M  Kolodner R  Nicolas A 《Genetics》2002,161(2):535-547
In Saccharomyces cerevisiae, meiotic recombination is initiated by transient DNA double-stranded breaks (DSBs). These DSBs undergo a 5' --> 3' resection to produce 3' single-stranded DNA ends that serve to channel DSBs into the RAD52 recombinational repair pathway. In vitro studies strongly suggest that several proteins of this pathway--Rad51, Rad52, Rad54, Rad55, Rad57, and replication protein A (RPA)--play a role in the strand exchange reaction. Here, we report a study of the meiotic phenotypes conferred by two missense mutations affecting the largest subunit of RPA, which are localized in the protein interaction domain (rfa1-t11) and in the DNA-binding domain (rfa1-t48). We find that both mutant diploids exhibit reduced sporulation efficiency, very poor spore viability, and a 10- to 100-fold decrease in meiotic recombination. Physical analyses indicate that both mutants form normal levels of meiosis-specific DSBs and that the broken ends are processed into 3'-OH single-stranded tails, indicating that the RPA complex present in these rfa1 mutants is functional in the initial steps of meiotic recombination. However, the 5' ends of the broken fragments undergo extensive resection, similar to what is observed in rad51, rad52, rad55, and rad57 mutants, indicating that these RPA mutants are defective in the repair of the Spo11-dependent DSBs that initiate homologous recombination during meiosis.  相似文献   

8.
Homologous recombination (HR) is a source of genomic instability and the loss of heterozygosity in mitotic cells. Since these events pose a severe health risk, it is important to understand the molecular events that cause spontaneous HR. In eukaryotes, high levels of HR are a normal feature of meiosis and result from the induction of a large number of DNA double-strand breaks (DSBs). By analogy, it is generally believed that the rare spontaneous mitotic HR events are due to repair of DNA DSBs that accidentally occur during mitotic growth. Here we provide the first direct evidence that most spontaneous mitotic HR in Saccharomyces cerevisiae is initiated by DNA lesions other than DSBs. Specifically, we describe a class of rad52 mutants that are fully proficient in inter- and intra-chromosomal mitotic HR, yet at the same time fail to repair DNA DSBs. The conclusions are drawn from genetic analyses, evaluation of the consequences of DSB repair failure at the DNA level, and examination of the cellular re-localization of Rad51 and mutant Rad52 proteins after introduction of specific DSBs. In further support of our conclusions, we show that, as in wild-type strains, UV-irradiation induces HR in these rad52 mutants, supporting the view that DNA nicks and single-stranded gaps, rather than DSBs, are major sources of spontaneous HR in mitotic yeast cells.  相似文献   

9.
The ubiquitin (Ub)-conjugating enzyme Ubc13 is implicated in Rad6/Rad18-dependent postreplication repair (PRR) in budding yeast, but its function in vertebrates is not known. We show here that disruption or siRNA depletion of UBC13 in chicken DT40 or human cells confers severe growth defects due to chromosome instability, and hypersensitivity to both UV and ionizing radiation, consistent with a conserved role for Ubc13 in PRR. Remarkably, Ubc13-deficient cells are also compromised for DNA double-strand break (DSB) repair by homologous recombination (HR). Recruitment and activation of the E3 Ub ligase function of BRCA1 and the subsequent formation of the Rad51 nucleoprotein filament at DSBs are abolished in Ubc13-deficient cells. Furthermore, generation of ssDNA/RPA complexes at DSBs is severely attenuated in the absence of Ubc13. These data reveal a critical and unexpected role for vertebrate Ubc13 in the initiation of HR at the level of DSB processing.  相似文献   

10.
E Van Dyck  F Foury  B Stillman    S J Brill 《The EMBO journal》1992,11(9):3421-3430
It has previously been shown that the mitochondrial DNA (mtDNA) of Saccharomyces cerevisiae becomes thermosensitive due to the inactivation of the mitochondrial DNA helicase gene, PIF1. A suppressor of this thermosensitive phenotype was isolated from a wild-type plasmid library by transforming a pif1 null strain to growth on glycerol at the non-permissive temperature. This suppressor is a nuclear gene encoding a 135 amino acid protein that is itself essential for mtDNA replication; cells lacking this gene are totally devoid of mtDNA. We therefore named this gene RIM1 for replication in mitochondria. The primary structure of the RIM1 protein is homologous to the single-stranded DNA binding protein (SSB) from Escherichia coli and to the mitochondrial SSB from Xenopus laevis. The mature RIM1 gene product has been purified from yeast extracts using a DNA unwinding assay dependent upon the DNA helicase activity of SV40 T-antigen. Direct amino acid sequencing of the protein reveals that RIM1 is a previously uncharacterized SSB. Antibodies against this purified protein localize RIM1 to mitochondria. The SSB encoded by RIM1 is therefore an essential component of the yeast mtDNA replication apparatus.  相似文献   

11.
12.
Cryptococcosis is a major threat to immunocompromised individuals. Isolates of Cryptococcus neoformans var. grubii and var. neoformans are responsible for most of the infections in the United States and Europe. In depth analysis of the virulence phenotype of this organism requires the generation of specific gene disruptions. The minimum sequence requirements for efficient homologous recombination has not been determined in Cryptococcus. To investigate the flanking DNA length requirements for efficient homologous recombination in variety grubii, the rates of homologous recombination of constructs with different lengths of flanking sequence at two loci, CAP59 and CNLAC1, were examined. Five gene disruption constructs were prepared for each locus with symmetric lengths of sequence homologous to the target gene with approximately 50, 100, 200, 300 or 400bp flanking the selectable marker for hygromycin resistance. In addition, two asymmetric constructs with 50bp on one side and 400bp on the other side were generated for each locus. Overall, symmetric constructs with 300bp or more of flanking sequence on each side and the asymmetric constructs were efficiently targeted for gene disruption by homologous recombination in C. neoformans var. grubii. With one exception, the rate of recovery of homologous recombinants using the longer or asymmetric constructs as targeting vectors was greater than five percent of total transformants. Symmetrical constructs with 100bp or less of homologous flanking sequence did not efficiently generate targeted gene disruptions because the rate of homologous recombinants was less than or equal to 1%.  相似文献   

13.
Summary We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, of the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of, homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.  相似文献   

14.
XRCC3 was originally identified as a human gene able to complement the DNA damage sensitivity, chromosomal instability and impaired growth of the mutant hamster cell line irs1SF. More recently, it has been cloned, sequenced and found to bear sequence homology to the highly conserved eukaryotic repair and recombination gene RAD51. The phenotype of irs1SF and the identification of XRCC3 as a member of the RAD51 gene family have suggested a role for XRCC3 in repair of DNA damage by homologous recombination. Homologous recombinational repair (HRR) of a specifically induced chromosomal double-strand break (DSB) was assayed in irs1SF cells with and without transient complementation by human XRCC3. Complementation with XRCC3 increased the frequencies of repair by 34- to 260-fold. The results confirm a role for XRCC3 in HRR of DNA DSB, and the importance of this repair pathway for the maintenance of chromosomal integrity in mammalian cells.  相似文献   

15.
The essential checkpoint kinase Chk1 is required for cell-cycle delays after DNA damage or blocked DNA replication. However, it is unclear whether Chk1 is involved in the repair of damaged DNA. Here we establish that Chk1 is a key regulator of genome maintenance by the homologous recombination repair (HRR) system. Abrogation of Chk1 function with small interfering RNA or chemical antagonists inhibits HRR, leading to persistent unrepaired DNA double-strand breaks (DSBs) and cell death after replication inhibition with hydroxyurea or DNA-damage caused by camptothecin. After hydroxyurea treatment, the essential recombination repair protein RAD51 is recruited to DNA repair foci performing a vital role in correct HRR. We demonstrate that Chk1 interacts with RAD51, and that RAD51 is phosphorylated on Thr 309 in a Chk1-dependent manner. Consistent with a functional interplay between Chk1 and RAD51, Chk1-depleted cells failed to form RAD51 nuclear foci after exposure to hydroxyurea, and cells expressing a phosphorylation-deficient mutant RAD51(T309A) were hypersensitive to hydroxyurea. These results highlight a crucial role for the Chk1 signalling pathway in protecting cells against lethal DNA lesions through regulation of HRR.  相似文献   

16.
DNA glycosylases, such as the Mag1 3-methyladenine (3MeA) DNA glycosylase, initiate the base excision repair (BER) pathway by removing damaged bases to create abasic apurinic/apyrimidinic (AP) sites that are subsequently repaired by downstream BER enzymes. Although unrepaired base damage may be mutagenic or recombinogenic, BER intermediates (e.g. AP sites and strand breaks) may also be problematic. To investigate the molecular basis for methylation-induced homologous recombination events in Saccharomyces cerevisiae, spontaneous and methylation-induced recombination were studied in strains with varied MAG1 expression levels. We show that cells lacking Mag1 have increased susceptibility to methylation-induced recombination, and that disruption of nucleotide excision repair (NER; rad4) in mag1 cells increases cellular susceptibility to these events. Furthermore, expression of Escherichia coli Tag 3MeA DNA glycosylase suppresses recombination events, providing strong evidence that unrepaired 3MeA lesions induce recombination. Disruption of REV3 (required for polymerase zeta (Pol zeta)) in mag1 rad4 cells causes increased susceptibility to methylation-induced toxicity and recombination, suggesting that Pol zeta can replicate past 3MeAs. However, at subtoxic levels of methylation damage, disruption of REV3 suppresses methylation-induced recombination, indicating that the effects of Pol zeta on recombination are highly dose-dependent. We also show that overproduction of Mag1 can increase the levels of spontaneous recombination, presumably due to increased levels of BER intermediates. However, additional APN1 endonuclease expression or disruption of REV3 does not affect MAG1-induced recombination, suggesting that downstream BER intermediates (e.g. single strand breaks) are responsible for MAG1-induced recombination, rather than uncleaved AP sites. Thus, too little Mag1 sensitizes cells to methylation-induced recombination, while too much Mag1 can put cells at risk of recombination induced by single strand breaks formed during BER.  相似文献   

17.
Although DNA sequence homology is believed to be a prerequisite for homologous recombination events in procaryotes and eucaryotes, no systematic study has been done on the minimum amount of homology required for homologous recombination in mammalian cells. We have used simian virus 40-pBR322 hybrid plasmids constructed in vitro as substrates to quantitate intramolecular homologous recombination in cultured monkey cells. Excision of wild-type simian virus 40 DNA by homologous recombination was scored by the viral plaque assay. Using a series of plasmids containing 0 to 243 base pairs of homology, we have shown that the recombination frequency decreases as the homology is reduced, with the sharpest drop in recombination frequency occurring when the homology was reduced from 214 to 163 base pairs. However, low recombination frequencies were also observed with as little as 14 base pairs of homology.  相似文献   

18.
19.
The PriA protein, a component of the phiX174-type primosome, was previously shown to be essential for damage-inducible DNA replication in Escherichia coli, termed inducible stable DNA replication. Here, we show that priA::kan null mutants are defective in transductional and conjugational homologous recombination and are hypersensitive to mitomycin C and gamma rays, which cause double-strand breaks. The introduction of a plasmid carrying the priA300 allele, which encodes a mutant PriA protein capable of catalyzing the assembly of an active primosome but which is missing the n'-pas-dependent ATPase, helicase, and translocase activities associated with PriA, alleviates the defects of priA::kan mutants in homologous recombination, double-strand break repair, and inducible stable DNA replication. Furthermore, spa-47, which was isolated as a suppressor of the broth sensitivity of priA::kan mutants, suppresses the Rec- and mitomycin C sensitivity phenotypes of priA::kan mutants. The spa-47 suppressor mutation maps within or very near dnaC. These results suggest that PriA-dependent primosome assembly is crucial for both homologous recombination and double-strand break repair and support the proposal that these processes in E. coli involve extensive DNA replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号