首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
T M Weigel  L D Liu  H W Liu 《Biochemistry》1992,31(7):2129-2139
CDP-4-keto-6-deoxy-D-glucose-3-dehydrase (E1) is a PMP-dependent enzyme which plays an essential role in C-O bond cleavage leading to the formation of 3,6-dideoxyhexoses. Although E1 catalysis has long been recognized as a unique biological deoxygenation reaction, the catalytic mechanism of this unusual enzyme has never been fully elucidated. The lack of methods that would allow this enzyme's activity to be monitored directly has been an impediment to E1 purification and has consequently hampered the mechanistic studies. In order to circumvent this problem, we have developed a few convenient and sensitive methods to facilitate the E1 assay. The first method relies on the fact that E1-catalyzed dehydration is initiated by a proton abstraction from C-4' of the PMP-substrate adduct. By using a tritium-labeled cofactor in the incubation that was later quenched with charcoal, the amount of E1 present could be determined from the amount of released tritium in the supernatant. The second method was designed on the basis of the expectation that E1 will bind and rupture the C-F bond of a substrate analogue, CDP-4-keto-3,6-dideoxy-3-fluoro-D-glucose, which was derived from CDP-3-deoxy-3-fluoro-D-glucose. Since the bond length and electronegativity of the C-F group are similar to those of a C-OH group, we anticipated that the proposed compound would be processed by E1, an assumption which was later substantiated. Another assay useful for measuring E1 activity couples the E1 transformation with the subsequent reduction step catalyzed by CDP-6-deoxy-delta 3,4-D-glucoseen reductase (E3) to a thiobarbituric acid (TBA) reaction. Since the condensation product of TBA and malonaldehyde derived from oxidative degradation of the E1/E3 product gave a pink chromophore at 532 nm with a known absorption coefficient, the yield of deoxysugar formation could be directly deduced on the basis of the observed absorbance. The most conclusive evidence confirming the role of E1 was attained by a GC/MS assay which permits an unambiguous identification of the deoxysugar product generated from the E1 and E3 reactions. With these convenient and sensitive assays in hand, we have established a sequence of four columns that was effective in consistently producing pure E1 from Yersinia pseudotuberculosis. The overall purification may be as high as 26,000-fold. This purified enzyme consists of a single polypeptide chain in its native form, and the estimated molecular weight is 49,000.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
An NAD(+)-dependent CDP-D-glucose oxidoreductase which catalyzes the first step of the biosynthesis of CDP-ascarylose (CDP-3,6-dideoxy-L-arabino-hexose), converting CDP-D-glucose to CDP-4-keto-6-deoxy-D-glucose, was isolated from Yersinia pseudotuberculosis. A protocol consisting of DEAE-cellulose, Matrex Blue-A, hydroxylapatite, DEAE-Sephadex, Sephadex G-100, and NAD(+)-agarose column chromatography was used to purify this enzyme 6000-fold to homogeneity. This enzyme consists of two identical subunits, each with a molecular weight of 42,500. Using CDP-D-glucose as the substrate, the Km and Vmax of this catalysis were determined to be 222 microM and 8.3 mumols mg-1 min-1, respectively. Unlike most other oxidoreductases of its class which have a tightly bound NAD+, this highly purified CDP-D-glucose oxidoreductase showed an absolute requirement of NAD+ for its activity. Using chemically synthesized (6S)- and (6R)-CDP-D-[4-2H,6-3H]glucose as substrates, a stereochemical analysis showed this enzymatic reaction involves an intramolecular hydrogen migration from C-4 to C-6, and the displacement of C-6 hydroxyl group by the C-4 hydrogen occurs with inversion. Thus, despite the low cofactor affinity, this enzyme undergoes a mechanism consistent with that followed by other members of its type. Such a mechanistic and stereochemical convergency found for all sugar oxidoreductases so far characterized suggests the presence of a common progenitor of this class of enzyme.  相似文献   

3.
Salmonella enterica and Yersinia pseudotuberculosis are the only examples in nature known to use a variety of 3,6-dideoxyhexose derivatives as O antigen constituents. To allow a comparison of the responsible biosynthetic genes of the two organisms, we have sequenced a section of the Y. pseudotuberculosis serogroup IIA rfb region that contained the genes for the abequose biosynthetic pathway. Comparison of the identified genes with the rfb region of S. enterica LT2 showed that the two dideoxyhexose pathway gene clusters are related. The arrangement of the genes was largely conserved, and the G + C compositions of the two DNA regions were strikingly similar; however, the degree of conservation of nucleotide and protein sequences suggested that the two gene clusters have been evolving independently for considerable time. Hybridization experiments showed that the dideoxyhexose pathway genes are widespread throughout the various serogroups of Y. pseudotuberculosis.  相似文献   

4.
Wu Q  Liu YN  Chen H  Molitor EJ  Liu HW 《Biochemistry》2007,46(12):3759-3767
CDP-6-deoxy-l-threo-d-glycero-4-hexulose-3-dehydrase (E1), which catalyzes C-3 deoxygenation of CDP-4-keto-6-deoxyglucose in the biosynthesis of 3,6-dideoxyhexoses, shares a modest sequence identity with other B6-dependent enzymes, albeit with two important distinctions. It is a rare example of a B6-dependent enzyme that harbors a [2Fe-2S] cluster, and a highly conserved lysine that serves as an anchor for PLP in most B6-dependent enzymes is replaced by histidine at position 220 in E1. Since alteration of His220 to a lysine residue may produce a putative progenitor of E1, the H220K mutant was constructed and tested for the ability to process the predicted substrate, CDP-4-amino-4,6-dideoxyglucose, using PLP as the coenzyme. Our data showed that H220K-E1 has no dehydrase activity, but can act as a PLP-dependent transaminase. However, the reaction is not catalytic since PLP cannot be regenerated during turnover. Reported herein are the results of this investigation and the implications for the role of His220 in the catalytic mechanism of E1.  相似文献   

5.
6.
Prior studies have shown some unusual changes in the lipopolysaccharides (LPSs) from Yersinia pseudotuberculosis that occur when the microbe is grown at low temperature; the specific features of these LPSs in comparison with the LPSs from other enteropathogens may be due to unusual thermal adaptation mechanisms. To gain insight into this question, the chemical composition of Y. pseudotuberculosis LPS has been determined. The data indicate that two different S-form LPS species are produced in "cold"-grown bacteria. These have an identical set of bands after SDS-PAGE, similar elution profiles during gel-filtration on a Sephadex G-200 column in the presence of sodium deoxycholate, identical monosaccharide and fatty acid compositions, and similar polymerization degrees, but they have different acylation degree. On the whole, the macromolecularly different LPS populations, varying not only in their smooth or rough nature and hydrophobicity, but also in their localization in the outer membrane and, probably, their interactions with other cell components, are synthesized in "cold"-grown Y. pseudotuberculosis. The biological sense of the heterogeneity and its connection with psychrophilic and pathogenic properties of pseudotuberculosis organisms are discussed.  相似文献   

7.
A high molecular weight immunoglobulin-binding protein localized on the surface of bacterial cells has been isolated from the protein fraction of the outer membrane of Yersinia pseudotuberculosis, and its properties are described. The immunoglobulin-binding protein is a trypsin-resistant and temperature-sensitive -structured protein. As shown by MALDI-TOF mass spectrometry, after heating at 100°C the molecular weight of the protein constituted 37.5 kD. The native protein is capable of interacting with human and rabbit IgG but looses the ability to bind the immunoglobulins after the temperature denaturation. The immunoglobulin-binding protein binds to the Fc-fragments of the immunoglobulins and binding depends on the presence of calcium ions.  相似文献   

8.
A pectate lyase gene (pelY) from Yersinia pseudotuberculosis was cloned in Escherichia coli DH-5 alpha. The gene was expressed in either orientation in pUC plasmids, indicating that the insert DNA carried a Y. pseudotuberculosis promoter which functioned in E. coli. However, when cloned in the orientation which placed the coding region downstream of the vector lac promoter, expression of pelY was nine times higher than it was in the opposite orientation and the growth of E. coli cells was inhibited. Nucleotide sequence analysis of the pelY gene disclosed an open reading frame of 1,623 base pairs (PLY). The peptide sequence at the amino-terminal end of the protein contains a typical signal peptide sequence, consistent with the observation that the mature PLY protein accumulated largely in the periplasmic space of E. coli. The pI of PLY produced in E. coli cells was 4.5, and its activity was inhibited 90% or more by EDTA. The enzyme macerated cucumber tissue about 1,000 times less efficiently than did PLe from Erwinia chrysanthemi EC16. The pelY gene has no sequence similarity to the pel genes thus far sequenced from Erwinia spp.  相似文献   

9.
Agnihotri G  Liu YN  Paschal BM  Liu HW 《Biochemistry》2004,43(44):14265-14274
CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase (E(1)) catalyzes the C-3 deoxygenation in the biosynthesis of 3,6-dideoxyhexoses in Yersinia pseudotuberculosis. E(1) is a pyridoxamine 5'-phosphate (PMP)-dependent enzyme that also contains a [2Fe-2S] center. This iron-sulfur cluster is catalytically essential, since removal of the [2Fe-2S] center leads to inactive enzyme. To identify the [2Fe-2S] core in E(1) and to study the effect of impairing the iron-sulfur cluster on the activity of E(1), a series of E(1) cysteine mutants were constructed and their catalytic properties were characterized. Our results show that E(1) displays a cluster-binding motif (C-X(57)-C-X(1)-C-X(7)-C) that has not been observed previously for [2Fe-2S] proteins. The presence of such an unusual iron-sulfur cluster in E(1), along with the replacement of the active site lysine by a histidine residue (H220), reflects a distinct evolutionary path for this enzyme. The cysteine residues (C193, C251, C253, C261) implicated in the binding of the iron-sulfur cluster in E(1) are conserved in the sequences of its homologues. It is likely that E(1) and its homologues constitute a new subclass in the family of iron-sulfur proteins, which are distinguished not only by their cluster ligation patterns but also by the chemistry used in catalyzing a simple, albeit mechanistically challenging, reaction.  相似文献   

10.
Since 1980, we have collected 1120 strains of Yersinia enterocolitica, from the different parts of China. These strains have been obtained from various sources in man, animals and natural environment accompanied by their clinical or ecological information of Yersinia enterocolitica. The results of our tests have shown that the 747 strains have exhibited the clinical morphological and biochemical characteristics of Yersinia enterocolitica. Through comparing under the same conditions, out of the 747 strains 335 have been selected out with better antigenicity and have been produced antisera from their representative strains. This set of antisera is very satisfactory for its potency and specificity. This set of antisera is ready to supply and have good efficacy and application facilitated for control strains on identifying strains and their epidemiologic observation.  相似文献   

11.
Studies were done to determine the usefulness of dilute alkali (KOH) treatment of meat samples for direct isolation of Yersinia enterocolitica and Yersinia pseudotuberculosis, without enrichment. Virulent Y. enterocolitica and Y. pseudotuberculosis in pork contaminated with 10(2), 10(3), and 10(4) cells per g survived the direct KOH treatment and were never recovered by using KOH postenrichment treatment. From 6 (4.8%) of 125 samples of retail ground pork, four biotype 4 serotype O3 and one biotype 3B serotype O3 strains of Y. enterocolitica and one Y. pseudotuberculosis serotype 4b strain were recovered by using direct KOH treatment without enrichment. As these isolations were attained without using enrichment cultural procedures, they represent an important time-saving alternative to simplify and speed isolation of Yersinia spp. from meat.  相似文献   

12.
A low-molecular-weight immunoglobulin-binding protein (IBP) bound with the cell envelope has been isolated from Yersinia pseudotuberculosis cells and partially characterized. This IBP is a hydrophilic protein with a high polarity index of 55.3%. The molecular weight of the protein has been determined by MALDI-TOF mass spectrometry as 14.3 kD. CD spectroscopy showed that the IBP has high contents of the beta-structure and random coil structure. The IBP contains glycine as the N-terminal amino acid. The protein can be stored for a long time at acidic pH values but aggregates and loses activity at alkaline and neutral pH. The IBP binds rabbit IgG with optimum at pH of 6.0-7.5. The IBP interacts with IgG molecule in the Fc-fragment region. The protein retains activity after heating at 100 degrees C in the presence of SDS.  相似文献   

13.
A soluble hemagglutinin (HA) produced by Yersinia pseudotuberculosis strain Inoue, serotype 5b, was purified by ammonium sulfate precipitation, gel filtration on Sepharose CL-6B and high performance liquid chromatography on a DEAE-5PW anion-exchange column. The purified HA was a 14.5 kDa protein with an isoelectric point of 4.5. Amino acid analysis indicated that the HA consisted of 133 residues, corresponding to the molecular weight of 14,100. The amino acid sequence of N-terminal 38 amino acid residues showed no homology with that of several fimbrial proteins from Escherichia coli.  相似文献   

14.
The skp gene of Yersinia pseudotuberculosis was expressed without its signal sequence in Escherichia coli BL21(DE3) cells. The recombinant protein Skp accumulated in soluble form in the cytoplasm of the producer strain. The protein was isolated and characterized: the molecular weight, isoelectric point, N-terminal amino acid sequence (20 amino acid residues), and the content of the secondary structure elements were determined. Using cross-linking stabilization and high-mass MALDI-TOF mass spectrometric analysis, it was found that rSkp forms a stable homotrimer in solution and interacts with human IgG. Three-dimensional models of the Skp trimer and its complexes with Fc- and Fab-fragments of human IgG1 were constructed by computer modeling.  相似文献   

15.
The encoding sequence of the pore-forming OmpF-like protein from the Yersinia pseudotuberculosis outer membrane was cloned and expressed in Escherichia coli cells. Conditions were selected for isolation and refolding of recombinant monomer and porin trimer. Their spatial structures were characterized by the intrinsic protein fluorescence and CD spectroscopy. It was shown that the recombinant porins are similar in the composition of secondary structure elements to the isolated porins, but have a considerably less compact tertiary structure. The pore-forming activities of the recombinant proteins are similar to those of Y. pseudotuberculosis native porins. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also http://www.maik.ru.  相似文献   

16.
The encoding sequence of the pore-forming OmpF-like protein from the Yersinia pseudotuberculosis outer membrane was cloned and expressed in Escherichia coli cells. Conditions for isolation and refolding of recombinant monomer and porin trimer were selected. Their spatial structures were characterized by the intrinsic protein fluorescence and CD spectroscopy. It was shown that recombinant porins are similar in the composition of secondary structure elements to isolated porins, but have a considerably less compact tertiary structure. The pore-forming activities of the recombinant proteins are similar to those of Y. pseudotuberculosis native porins.  相似文献   

17.
Leaves and bulbs of garlic ( Allium sativum L.) contain a chitinase which can be separated into three different isoforms with similar molecular structure and N- terminal amino acid sequence. SDS-PAGE of the alkylated chitinase revealed two distinct polypeptides of 32 and 33 kDa. Induction studies of the chitinase in leaves of garlic plants indicated that not only treatment with ethephon or salicylate and wounding but also a temperature shock strongly increased the enzyme level.
cDNA libraries constructed from poly(A)-rich RNA isolated from young garlic shoots and bulbs were screened for chitinase clones using the cDNA clone CCH4 encoding a basic potato chitinase as a probe. Two different cDNA clones (designated CHITAS 1 and CHITAS 2)of ca 1 000 bp were isolated and their sequences analyzed. The amino acid sequences deduced from both cDNA clones were homologous though not identical to the N-terminal sequences of the mature chitinases. Although both clones encode highly homologous chitinases their sequences definitely differ in that they have different signal peptides and one of them contains a glycine-rich domain. The garlic chitinases are apparently translated from an mRNA of 1200 nucleotides which encodes a proprotein of approximately 32 or 33 kDa for CHITAS 1 and CHITAS 2, respectively. Co-translational removal of the signal peptide will result in a 30 (for CHITAS 1) or 31 kDa (for CHITAS 2) protein with an isoelectric point of 4. 94 (for CHITAS 1) or 6. 12 (for CHITAS 2). Garlic chitinases are encoded by a small gene family as shown by Southern blot analysis of genomic DNA isolated from garlic.
The garlic chitinases show a high degree of sequence homology to the previously isolated chitinases from dicotyledonous as well as monocotyledonous species, indicating that these proteins have been conserved from an evolutionary point of view.  相似文献   

18.
The 3,6-dideoxyhexoses, usually confined to the cell wall lipopolysaccharide of gram-negative bacteria, are essential to serological specificity and are formed via a complex biosynthetic pathway beginning with CDP-D-hexoses. In particular, the biosynthesis of CDP-ascarylose, one of the naturally occurring 3,6-dideoxyhexoses, consists of five enzymatic steps, with CDP-6-deoxy-delta 3,4-glucoseen reductase (E3) participating as the key enzyme in this catalysis. This enzyme has been previously purified from Yersinia pseudotuberculosis by an unusual procedure (protocol I) including a trypsin digestion step (O. Han, V.P. Miller, and H.-W. Liu, J. Biol. Chem. 265:8033-8041, 1990). However, the cloned gene showed disparity with the expected gene characteristics, and upon expression, the resulting gene product exhibited no E3 activity. These findings strongly suggested that the protein isolated by protocol I may have been misidentified as E3. A reinvestigation of the purification protocol produced a new and improved procedure (protocol II) consisting of DEAE-Sephacel, phenyl-Sepharose, Cibacron blue A, and Sephadex G-100 chromatography, which efficiently yielded a new homogeneous enzyme composed of a single polypeptide with a molecular weight of 39,000. This highly purified protein had a specific activity nearly 8,000-fold higher than that of cell lysates, and more importantly, the corresponding gene (ascD) was found to be part of the ascarylose biosynthetic cluster. Presented are the identification and confirmation of the E3 gene through cloning and overexpression and the culminating purification and unambiguous assignment of homogeneous E3. The nucleotide and translated amino acid sequences of the genuine E3 are also presented.  相似文献   

19.
A new culture method employing a potassium hydroxide treatment was compared with the conventional cold enrichment method for efficacy in recovering Yersinia sp. from naturally and artificially contaminated food. The new method increased the yield of Yersinia sp. fourfold and the sensitivity 100-fold, shortened the incubation period, and appreciably decreased the growth of non-Yersinia bacteria from a variety of meats, shellfish, and vegetables.  相似文献   

20.
We have cloned ansB (YPTB1411) gene from Yersinia pseudotuberculosis Q66CJ2 and constructed stable inducible expression system that overproduce L-asparaginase from Y. pseudotuberculosis (YpA) in Escherichiacoli BL21 (DE3) cells. For purification of YpA we used Q-Sepharose and DEAE-Toyopearl column chromatography. We examined kinetics of the enzyme reaction, catalytic activity as a function of pH, temperature and ionic strength, thermostability and other enzyme properties. Biochemical properties of YpA are similar with those of E. coli type II L-asparaginase. K(m) for L-asparagine is 17 ± 0.9 μM and pI 5.4 ± 0.3. Enzyme demonstrates maximum activity at pH 8.0 and 60 °C. YpA L-glutaminase activity is relatively low and more than 15 times less than specific activity towards L-asn. We evaluated also the antiproliferative effect of YpA in vitro and in vivo with E. colil-asparaginase (EcA) as the reference substance at similar conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号